Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Because of its proximity, our Sun provides a unique opportunity to perform high resolution observations of its outer layers throughout the whole electromagnetic spectrum. We can also theoretically model most of the fascinating physical phenomena taking place on the Sun, as well as their impact on the solar system. Many of these phenomena can be properly studied within the framework of magnetohydrodynamics. More specifically, we assume a fully ionized hydrogen plasma and adopt the more comprehensive two-fluid magnetohydrodynamic approximation. For problems such as the solar wind or magnetic loops in the solar corona, which are shaped by a relatively strong mean magnetic field, the reduced magnetohydrodynamic approximation is often used. We will review the basic features of both two-fluid and one-fluid magnetohydrodynamics, and focus on two particular applications: the turbulent heating of coronal active regions and the dynamics of the solar wind.© 2012 COSPAR. Published by Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Magnetohydrodynamics in solar and space physics
Autor:Gómez, D.; Martín, L.N.; Dmitruk, P.
Filiación:Instituto de Astronomía y Física Del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires, Argentina
Departamento de Física, Universidad de Buenos Aires, Pabellón I-Ciudad Universitaria, 1428 Buenos Aires, Argentina
Palabras clave:Magnetohydrodynamics; Solar physics; Space physics; Turbulence; Coronal active regions; Electromagnetic spectra; High resolution observations; Ionized hydrogen plasmas; Mean magnetic field; Reduced magnetohydrodynamics; Solar physics; Space physics; Solar wind; Sun; Turbulence; Magnetohydrodynamics
Año:2013
Volumen:51
Número:10
Página de inicio:1916
Página de fin:1923
DOI: http://dx.doi.org/10.1016/j.asr.2012.09.016
Título revista:Advances in Space Research
Título revista abreviado:Adv. Space Res.
ISSN:02731177
CODEN:ASRSD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02731177_v51_n10_p1916_Gomez

Referencias:

  • Aschwanden, M.J., (2004) Physics of the Solar Corona: An Introduction, , Springer-Verlag Berlin
  • Balbus, S.A., Terquem, C., Linear analysis of the Hall effect in protostellar disks (2001) Astrophys. J., 552, pp. 235-247
  • Bian, N.H., Tsiklauri, D., Compressible Hall magnetohydrodynamics in a strong magnetic field (2009) Phys. Plasmas, 16, p. 064503
  • Bian, N.H., Kontar, E.P., A gyrofluid description of alfvenic turbulence and its parallel electric field (2010) Phys. Plasmas, 17, p. 062308
  • Bian, N.H., Kontar, E.P., Brown, J.C., Parallel electric field generation by Alfvén wave turbulence (2010) Astron. Astrophys., 519, p. 114
  • Dmitruk, P., Matthaeus, W.H., A two-component phenomenology for homogeneous magnetohydrodynamic turbulence (2006) Phys. Plasmas, 13, p. 042306
  • Dmitruk, P., Matthaeus, W.H., Oughton, S., Direct comparisons of compressible magnetohydrodynamics and reduced magnetohydrodynamics turbulence (2005) Phys. Plasmas, 12, p. 112304
  • Dmitruk, P., Gómez, D.O., Matthaeus, W.H., Energy spectrum of turbulent fluctuations in boundary driven reduced MHD (2003) Phys. Plasmas, 10, pp. 3584-3591
  • Dmitruk, P., Gómez, D.O., Scaling law for the heating of solar coronal loops (1999) Astrophys. J., 527, pp. 63-L66
  • Dmitruk, P., Gómez, D.O., Deluca, E., MHD turbulence of coronal active regions and the distribution of nanoflares (1998) Astrophys. J., 505, pp. 974-983
  • Dmitruk, P., Gómez, D.O., Turbulent coronal heating and the distribution of nanoflares (1997) Astrophys. J., 484, pp. 83-L86
  • Galtier, S., Wave turbulence in incompressible Hall magnetohydrodynamics (2006) J. Plasma Phys., 72, pp. 721-769
  • Goldston, R.J., Rutherford, P.H., (1995) Introduction to Plasma Physics, , IOP Publ. Bristol & Philadelphia
  • Gómez, D.O., Mininni, P.D., Dmitruk, P., Hall-magnetohydrodynamic small-scale dynamos (2010) Phys. Rev. e, 82, p. 036406
  • Gómez, D.O., Mahajan, S.M., Dmitruk, P., Hall magnetohydrodynamics in a strong magnetic field (2008) Phys. Plasmas, 15, p. 102303
  • Gómez, D.O., Dmitruk, P., Turbulent heating of coronal active regions (2008) Proc. IAU Symp. 247: Waves and Oscillations in the Solar Atmosphere, pp. 269-278. , Erdelyi, R.; Mendoza-Briceño, C.A. (Eds.)
  • Gómez, D.O., Ferro Fontán, C., Development of MHD turbulence in coronal loops (1992) Astrophys. J., 394, pp. 662-669
  • Gómez, D.O., Ferro Fontán, C., Coronal heating by selective decay of MHD turbulence (1988) Sol. Phys., 116, pp. 33-44
  • Hendrix, D.L., Van Hoven, G., Magnetohydrodynamic turbulence and implications for solar coronal heating (1996) Astrophys. J., 467, pp. 887-893
  • Howes, G.G., Limitations of Hall MHD as a model for turbulence in weakly collisional plasmas (2009) Nonlinear Proc. Geophys., 16, pp. 219-232
  • Krall, N.A., Trivelpiece, A.W., (1973) Principles of Plasma Physics, , McGraw-Hill New York pp. 89
  • Longcope, D.W., Sudan, R.N., Evolution and statistics of current sheets in coronal magnetic loops (1994) Astrophys. J., 437, pp. 491-504
  • Mahajan, S.M., Yoshida, Z., A collisionless self-organizing model for the high-confinement (H-mode) boundary layer (2000) Phys. Plasmas, 7, pp. 635-640
  • Martín, L.N., Dmitruk, P., Gómez, D.O., Hall effect in a strong magnetic field: Direct comparisons of compressible MHD and the reduced Hall-MHD equations (2010) Phys. Plasmas, 17, p. 112304
  • Matthaeus, W.H., Dmitruk, P., Smith, D., Ghosh, S., Oughton, S., Impact of Hall effect on energy decay in magnetohydrodynamic turbulence (2003) Geophys. Res. Lett., 30, p. 2104
  • Matthaeus, W.H., Oughton, S., Ghosh, S., Hossain, M., Scaling of anisotropy in hydromagnetic turbulence (1998) Phys. Rev. Lett., 81, pp. 2056-2059
  • Milano, L., Dmitruk, P., Mandrini, C.H., Gómez, D.O., Demoulin, P., QSLs in a reduced magnetohydrodynamics model of a coronal loop (1999) Astrophys. J., 521, pp. 889-897
  • Mininni, P.D., Alexakis, A., Pouquet, A., Energy transfer in Hall-MHD turbulence: Cascades, backscatter, and dynamo action (2007) J. Plasma Phys., 73, p. 377
  • Mininni, P.D., Gómez, D.O., Mahajan, S.M., Direct simulations of helical Hall MHD turbulence and dynamo action (2005) Astrophys. J., 619, pp. 1019-1027
  • Mininni, P.D., Gómez, D.O., Mahajan, S.M., Role of the Hall current in MHD dynamos (2003) Astrophys. J., 584, pp. 1120-1126
  • Morales, L.F., Dasso, S., Gómez, D.O., The Hall effect in incompressible magnetic reconnection (2005) J. Geophys. Res., 110, p. 04204
  • Montgomery, D.C., Major disruptions, inverse cascades, and the Strauss equations (1982) Phys. Scr., T2 (1), pp. 83-88
  • Mozer, F., Bale, S., Phan, T.D., Evidence of diffusion regions at a subsolar magnetopause crossing (2002) Phys. Rev. Lett., 89, p. 015002
  • Oughton, S., Matthaeus, W.H., Ghosh, S., Scaling of spectral anisotropy with magnetic field strength in decaying magnetohydrodynamic turbulence (1998) Phys. Plasmas, 5, pp. 4235-4242
  • Oughton, S., Priest, E.R., Matthaeus, W.H., The influence of a mean magnetic field on three-dimensional magnetohydrodynamic turbulence (1994) J. Fluid Mech., 280, pp. 95-117
  • Parker, E.N., Nanoflares and the solar X-ray corona (1988) Astrophys. J., 330, pp. 474-479
  • Schekochihin, A.A., Cowley, S.C., Dorland, W., Hammett, G.W., Howes, G.G., Quataert, E., Tatsuno, T., Astrophysical gyrokinetics: Kinetic and fluid turbulent cascades in magnetized weakly collisional astrophysical plasmas (2009) Astrophys. J. Suppl., 182, pp. 310-377
  • Shebalin, J.V., Matthaeus, W.H., Montgomery, D., Anisotropy in MHD turbulence due to a mean magnetic field (1983) J. Plasma Phys., 29, pp. 525-547
  • Smith, D., Ghosh, S., Dmitruk, P., Matthaeus, W.H., Hall and turbulence effects on magnetic reconnection (2004) Geophys. Res. Lett., 31, p. 02805
  • Strauss, H., Nonlinear, three-dimensional magnetohydrodynamics of noncircular tokamaks (1976) Phys. Fluids, 19, pp. 134-140
  • Turner, L., Hall effects on magnetic relaxation (1983) IEEE Trans. Plasma Sci., PS14, pp. 849-857
  • Van Ballegooijen, A.A., Cascade of magnetic energy as a mechanism of coronal heating (1986) Astrophys. J., 311, pp. 1001-1014
  • Wardle, M., Ng, C., The conductivity of dense molecular gas (1999) Mon. Not. R.A.S., 303, pp. 239-246. , (1992) 11, 2214 (2004)

Citas:

---------- APA ----------
Gómez, D., Martín, L.N. & Dmitruk, P. (2013) . Magnetohydrodynamics in solar and space physics. Advances in Space Research, 51(10), 1916-1923.
http://dx.doi.org/10.1016/j.asr.2012.09.016
---------- CHICAGO ----------
Gómez, D., Martín, L.N., Dmitruk, P. "Magnetohydrodynamics in solar and space physics" . Advances in Space Research 51, no. 10 (2013) : 1916-1923.
http://dx.doi.org/10.1016/j.asr.2012.09.016
---------- MLA ----------
Gómez, D., Martín, L.N., Dmitruk, P. "Magnetohydrodynamics in solar and space physics" . Advances in Space Research, vol. 51, no. 10, 2013, pp. 1916-1923.
http://dx.doi.org/10.1016/j.asr.2012.09.016
---------- VANCOUVER ----------
Gómez, D., Martín, L.N., Dmitruk, P. Magnetohydrodynamics in solar and space physics. Adv. Space Res. 2013;51(10):1916-1923.
http://dx.doi.org/10.1016/j.asr.2012.09.016