Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We revisit previous studies in which the characteristics of the solar and interplanetary sources of intense geomagnetic storms have been discussed. In this particular analysis, using the Dst time series, we consider the very intense geomagnetic storms that occurred during Solar Cycle 23 by setting a value of Dstmin≤-200nT as threshold. After carefully examining the set of available solar and in situ observations from instruments aboard the Solar and Heliospheric Observatory (SOHO) and the Advanced Composition Explorer (ACE), complemented with data from the ground, we have identified and characterized the solar and interplanetary sources of each storm. That is to say, we determine the time, angular width, plane-of-the-sky, lateral expansion, and radial velocities of the source coronal mass ejection (CME), the type and heliographic location of the CME solar source region (including the characteristics of the sunspot groups), and the time duration of the associated flare. After this, we investigate the overall characteristics of the interplanetary (IP) main-phase storm driver, including the time arrival of the shock/disturbance at 1 AU, the type of associated IP structure/ejecta, the origin of a prolonged and enhanced southward component (Bs) of the IP field, and other characteristics related to the energy injected into the magnetosphere during the storm (i.e. the solar wind maximum convected electric field, Ey). The analyzed set consists of 20 events, some of these are complex and present two or more Dst minima that are, in general, due to consecutive solar events. The 20 storms are distributed along Solar Cycle 23 (which is a double-peak cycle) in such a way that 15% occurs during the rising phase of the cycle, 45% during both cycle maxima, and, surprisingly, 40% during the cycle descending phase. This latter set includes half of the superstorms and the only cycle extreme event. 85% of the storms are associated to full halo CMEs and 10% to partial halo events. One of the storms occurred at the time contact with SOHO was lost. The CME solar sources of all analyzed storms, but one, are active regions (ARs). The source of the remaining CME is a bipolar low-field region where a long and curved filament erupts. The ARs where the CMEs originate show, in general, high magnetic complexity; δ spots are present in 74% of the ARs, 10% are formed by several bipolar sunspot groups, and only 16% present a single bipolar sunspot group. All CMEs are associated to long duration events (LDEs), exceeding 3 h in all cases, with around 75% lasting more than 5 h. The associated flares are, in general, intense events, classified as M or X in soft X-rays; only 3 of them fall in the C class, with the one happening in the bipolar low field region hardly reaching the C level. We calculate the lateral expansion velocity for most of the CMEs. The values found exceed in all cases but one the fast solar wind speed (≈750 km s -1). The average lateral expansion velocity is 2400 km s -1. The spatial distribution of the solar CME sources on the solar disk shows an evident asymmetry; while there are no sources located more eastward than 12° in longitude, there are 7 events more westward than 12°. Nevertheless, the bulk of the solar sources are located near Sun center, i.e. at less than 20° in longitude or latitude. Considering the IP structures responsible for a long and enhanced Bs, we find that 35% correspond to magnetic clouds (MCs) or ICME fields, 30% to sheath fields, and 30% to combined sheath and MC or ICME fields. For only one storm the origin of Bs is related to the back compression of an ICME by a high speed stream coming from a coronal hole in the neighborhood of the corresponding CME source region. We have also found that for this particular set of storms the linear relation between Ey and the storm intensity holds (with a correlation coefficient of 0.73). These results complement and extend those of other works in the literature.© 2012 COSPAR. Published by Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Very intense geomagnetic storms and their relation to interplanetary and solar active phenomena
Autor:Szajko, N.S.; Cristiani, G.; Mandrini, C.H.; Dal Lago, A.
Filiación:Instituto de Astronomía y Física Del Espacio, CONICET-UBA, CC 67 Suc. 28, 1428 Buenos Aires, Argentina
Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina
Instituto Nacional de Pesquisas Espaciais, Av.dos Astronautas 1758, 12227-010 São José dos Campos, SP, Brazil
Carrera Del Investigador Científico, CONICET, Argentina
Palabras clave:CMEs/ICMEs; Solar activity; Very intense geomagnetic storms; CMEs/ICMEs; Coronal mass ejection; Correlation coefficient; In-situ observations; Intense geomagnetic storms; Overall characteristics; Solar activity; Solar and heliospheric observatories; Electric fields; Expansion; Geomagnetism; Magnetosphere; Solar energy; Solar wind; Transport properties; Storms
Año:2013
Volumen:51
Número:10
Página de inicio:1842
Página de fin:1856
DOI: http://dx.doi.org/10.1016/j.asr.2012.03.006
Título revista:Advances in Space Research
Título revista abreviado:Adv. Space Res.
ISSN:02731177
CODEN:ASRSD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02731177_v51_n10_p1842_Szajko

Referencias:

  • Attrill, G., Nakwacki, M.S., Harra, L.K., Van Driel-Gesztelyi, L., Mandrini, C.H., Dasso, S., Wang, J., Using the evolution of coronal dimming regions to probe the global magnetic field topology (2006) Sol. Phys., 238, pp. 117-139
  • Bisi, M.M., Breen, A.R., Jackson, B.V., Fallows, R.A., Walsh, A.P., Mikić, Z., Riley, P., Pintér, B., From the Sun to the Earth: The 13 May 2005 coronal mass ejection (2010) Sol. Phys., 265, pp. 49-127
  • Borrini, G., Gosling, J.T., Bame, S.J., Feldman, W.C., Helium abundance enhancements in the solar wind (1982) Jour. of Geophys. Res., 87, pp. 7370-7378
  • Brueckner, G.E., Delaboudiniere, J.-P., Howard, R.A., Paswaters, S.E., St. Cyr, O.C., Schwenn, R., Lamy, P., Wang, D., Geomagnetic storms caused by coronal mass ejections (CMEs): March 1996 through June 1997 (1998) Geophys. Res. Lett., 25, pp. 3019-3022
  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Eyles, C.J., The large angle spectroscopic coronagraph (LASCO) (1995) Sol. Phys., 162, pp. 357-402
  • Burlaga, L., Sittler, E., Mariani, F., Schwenn, R., Magnetic loop behind an interplanetary shock-Voyager, Helios, and IMP 8 observations (1981) J. Geophys. Res., 86, pp. 6673-6684
  • Cane, H.V., Richardson, I.G., Cyr, O.C.S., Coronal mass ejections, interplanetary ejecta and geomagnetic storms (2000) Geophys. Res. Lett., 27, pp. 3591-3594
  • Chandra, R., Pariat, E., Schmieder, B., Mandrini, C.H., Uddin, W., How can a negative magnetic helicity active region generate a positive helicity magnetic cloud? (2010) Sol. Phys., 261, pp. 127-148
  • (1940) Geomagnetism: Geomagnetic and Related Phenomena, 1, p. 542. , Chapman, S.; Bartels, J. Oxford, Clarendon Press 1940
  • Cid, C., Saiz, E., Cerrato, Y., Comment on "interplanetary conditions leading to superintense geomagnetic storms (Dst ≤ - 250 nT) during solar cycle 23" by E. Echer et al (2008) Geophys. Res. Lett., 35, p. 21107
  • Dal Lago, A., Gonzalez, W.D., Balmaceda, L.A., Vieira, L.E.A., Echer, E., Guarnieri, F.L., Santos, J., Schuch, N.J., The 17-22 October (1999) solar-interplanetary-geomagnetic event: Very intense geomagnetic storm associated with a pressure balance between interplanetary coronal mass ejection and a high-speed stream (2006) J. Geophys. Res. (Space Physics), 111, pp. 07S14
  • Dal Lago, A., Schwenn, R., Gonzalez, W.D., Relation between the radial speed and the expansion speed of coronal mass ejections (2003) Adv. Spac. Res., 32, pp. 2637-2640
  • Dal Lago, A., Vieira, L.E.A., Echer, E., Gonzalez, W.D., Clúa De Gonzalez, A.L., Guarnieri, F.L., Balmaceda, L., Schuch, N.J., Great geomagnetic storms in the rise and maximum of solar cycle 23 (2004) Braz. Jour. Phys., 34, pp. 1542-1546
  • Dal Lago, A., Vieira, L.E.A., Echer, E., Gonzalez, W.D., De Gonzalez, A.L.C., Guarnieri, F.L., Schuch, N.J., Schwenn, R., Comparison between Halo CME expansion speeds observed on the Sun, the related shock transit speeds to Earth and corresponding ejecta speeds at 1 AU (2004) Sol. Phys., 222, pp. 323-328
  • Dasso, S., Mandrini, C.H., Démoulin, P., Luoni, M.L., A new model-independent method to compute magnetic helicity in magnetic clouds (2006) Astron. Astrophys., 455, pp. 349-359
  • Dasso, S., Mandrini, C.H., Schmieder, B., Cremades, H., Cid, C., Cerrato, Y., Saiz, E., Poedts, S., Linking two consecutive nonmerging magnetic clouds with their solar sources (2009) J. Geophys. Res. (Space Physics), 114, p. 02109
  • Delaboudiniere, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F., Millier, F., Song, X.Y., Van Dessel, E.L., EIT: Extreme-ultraviolet imaging telescope for the SOHO mission (1995) Sol. Phys., 162, pp. 291-312
  • Démoulin, P., A review of the quantitative links between CMEs and magnetic clouds (2008) Ann. Geophys., 26, pp. 3113-3125
  • Démoulin, P., Mandrini, C.H., Van Driel-Gesztelyi, L., Thompson, B.J., Plunkett, S., Kovári, Z., Aulanier, G., Young, A., What is the source of the magnetic helicity shed by CMEs? the long-term helicity budget of AR 7978 (2002) Astron. Astrophys., 382, pp. 650-665
  • Echer, E., Gonzalez, W.D., Tsurutani, B.T., Interplanetary conditions leading to superintense geomagnetic storms (Dst ≤ - 250 nT) during solar cycle 23 (2008) Geophys. Res. Lett., 35, p. 6
  • Echer, E., Gonzalez, W.D., Tsurutani, B.T., Gonzalez, A.L.C., Interplanetary conditions causing intense geomagnetic storms (Dst ≤ - 100 nT) during solar cycle 23 (1996-2006) (2008) J. Geophys. Res. (Space Physics), 113 (A12), p. 05221
  • Fan, Y., Magnetic fields in the solar convection zone (2009) Living Rev. Sol. Phys., 6, p. 4. , +
  • Fan, Y., Zweibel, E.G., Linton, M.G., Fisher, G.H., The rise of kink-unstable magnetic flux tubes and the origin of delta-configuration sunspots (1999) Astrophys. J., 521, pp. 460-477
  • Feminella, F., Storini, M., Large-scale dynamical phenomena during solar activity cycles (1997) Astron. Astrophys., 322, pp. 311-319
  • Fok, M.C., Moore, T.E., Kozyra, J.U., Ho, G.C., Hamilton, D.C., Three-dimensional ring current decay model (1995) J. Geophys. Res., 100, pp. 9619-9632
  • Gonzalez, W.D., Echer, E., Clúa De Gonzalez, A.L., Tsurutani, B.T., Lakhina, G.S., Extreme geomagnetic storms, recent Gleissberg cycles and space era-superintense storms (2011) J. Atmos. Solar-Terres. Phys., 73, pp. 1447-1453
  • Gonzalez, W.D., Echer, E., Tsurutani, B.T., Clúa De Gonzalez, A.L., Dal Lago, A., Interplanetary origin of intense, superintense and extreme geomagnetic storms (2011) Space Sci. Rev., 158, pp. 69-89
  • Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B.T., Vasyliunas, V.M., What is a geomagnetic storm? (1994) J. Geophys. Res., 99, pp. 5771-5792
  • Gonzalez, W.D., Tsurutani, B.T., Criteria of interplanetary parameters causing intense magnetic storms (Dst of less than-100 nT) (1987) Planet. Space Sci., 35, pp. 1101-1109
  • Gonzalez, W.D., Tsurutani, B.T., Lepping, R.P., Schwenn, R., Interplanetary phenomena associated with very intense geomagnetic storms (2002) J. Atmos. Solar-Terres. Phys., 64, pp. 173-181
  • Gopalswamy, N., Yashiro, S., Liu, Y., Michalek, G., Vourlidas, A., Kaiser, M.L., Howard, R.A., Coronal mass ejections and other extreme characteristics of the 2003 October-November solar eruptions (2005) J. Geophys. Res. (Space Physics), 110, pp. 09S15
  • Gopalswamy, N., Yashiro, S., Michalek, G., Stenborg, G., Vourlidas, A., Freeland, S., Howard, R., The SOHO/LASCO CME Catalog (2009) Earth Moon Planet., 104, pp. 295-313
  • Gosling, J.T., Baker, D.N., Bame, S.J., Feldman, W.C., Zwickl, R.D., Smith, E.J., Bidirectional solar wind electron heat flux events (1987) J. Geophys. Res., 92, pp. 8519-8535
  • Gosling, J.T., Pizzo, V., Bame, S.J., Anomalously low proton temperatures in the solar wind following interplanetary shock waves- evidence for magnetic bottles? (1973) J. Geophys. Res., 78, pp. 2001-2009
  • Harra, L.K., Crooker, N.U., Mandrini, C.H., Van Driel-Gesztelyi, L., Dasso, S., Wang, J., Elliott, H., Bisi, M.M., How does large flaring activity from the same active region produce oppositely directed magnetic clouds? (2007) Sol. Phys., 244, pp. 95-114
  • Hudson, H.S., Labonte, B.J., Sterling, A.C., Watanabe, T., NOAA 7978: The Last Best Old-cycle Region? (1998) Observational Plasma Astrophysics: Five Years of Yohokh and beyond, pp. 237-244. , Watanabe T. Kosugi T. & Sterling A.C. (Ed.)
  • Klein, L.W., Burlaga, L.F., Interplanetary magnetic clouds at 1 AU (1982) J. Geophys. Res., 87, pp. 613-624
  • Linton, M.G., Dahlburg, R.B., Fisher, G.H., Longcope, D.W., Nonlinear evolution of kink-unstable magnetic flux tubes and solar delta-spot active regions (1998) Astrophys. J., 507, pp. 404-416
  • Liu, Y., Richardson, J.D., Belcher, J.W., A statistical study of the properties of interplanetary coronal mass ejections from 0.3 to 5.4 AU (2005) Planet. Space Sci., 53, pp. 3-17
  • Mandrini, C.H., Demoulin, P., Schmieder, B., Deluca, E.E., Pariat, E., Uddin, W., Companion event and precursor of the X17 flare on 28 October 2003 (2006) Sol. Phys., 238, pp. 293-312
  • Mandrini, C.H., Démoulin, P., Van Driel-Gesztelyi, L., Green, L.M., López Fuentes, M.C., Magnetic helicity budget of solar-active regions from the photosphere to magnetic clouds (2004) Astrophys. Space Sci., 290, pp. 319-344
  • Mandrini, C.H., Nakwacki, M.S., Attrill, G., Van Driel-Gesztelyi, L., Démoulin, P., Dasso, S., Elliott, H., Are CME-related dimmings always a simple signature of interplanetary magnetic cloud footpoints? (2007) Sol. Phys., 244, pp. 25-43
  • McComas, D.J., Bame, S.J., Barker, P., Feldman, W.C., Phillips, J.L., Riley, P., Griffee, J.W., Solar wind electron proton alpha monitor (SWEPAM) for the advanced composition explorer (1998) Space Sci. Rev., 86, pp. 563-612
  • Ontiveros, V., Gonzalez-Esparza, J.A., Geomagnetic storms caused by shocks and ICMEs (2010) J. Geophys. Res. (Space Physics), 115 (A14), p. 10244
  • Poisson, M., López Fuentes, M., Mandrini, C.H., Démoulin, P., Pariat, E., (2013) Study of Magnetic Flux Emergence and Related Activity in Active Region NOAA 10314, 51, pp. 1834-1841
  • Rodriguez, L., Zhukov, A.N., Cid, C., Cerrato, Y., Saiz, E., Cremades, H., Dasso, S., Schmieder, B., Three frontside full halo coronal mass ejections with a nontypical geomagnetic response (2009) Space Weather, 70, p. 06003
  • Rostoker, G., Fälthammar, C.-G., Relationship between changes in the interplanetary magnetic field and variations in the magnetic field at the Earth's surface (1967) J. Geophys. Res., 72, p. 5853. , +
  • Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Zayer, I., MDI engineering team. The solar oscillations investigation-Michelson Doppler imager (1995) Sol. Phys., 162, pp. 129-188
  • Sheeley, Jr.N.R., Howard, R.A., Koomen, M.J., Michels, D.J., Associations between coronal mass ejections and soft X-ray events (1983) ApJ, 272, pp. 349-354
  • Siscoe, G., Macneice, P.J., Odstrcil, D., East-west asymmetry in coronal mass ejection geoeffectiveness (2007) Space Weather, 50, p. 04002
  • Smith, C.W., L'Heureux, J., Ness, N.F., Acuña, M.H., Burlaga, L.F., Scheifele, J., The ACE magnetic fields experiment (1998) Space Sci. Rev., 86, pp. 613-632
  • Tsuneta, S., Acton, L., Bruner, M., Lemen, J., Brown, W., Caravalho, R., Catura, R., Owens, J., The soft X-ray telescope for the SOLAR-A mission (1991) Sol. Phys., 136, pp. 37-67
  • Tsurutani, B.T., Gonzalez, W.D., Kamide, Y., Arballo, J.K., (1997) Preface, , AGU
  • Tsurutani, B.T., Lee, Y.T., Gonzalez, W.D., Tang, F., Great magnetic storms (1992) Geophys. Res. Lett., 19, pp. 73-76
  • Van Driel-Gesztelyi, L., Evolution and Decay of Active Regions (Invited review) (1998) Three-Dimensional Structure of Solar Active Regions, Vol. 155 of Astron, p. 202. , C.E. Alissandrakis & B. Schmieder (Eds.) Soc. of the Pacific CS
  • Von Humboldt, A., Die vollständigste aller bisherigen Beobachtungen über den Einfluss des Nordlichts auf die Magnetnadel angestellt (1808) Annalen der Physik, 29, pp. 425-429
  • Wang, C., Du, D., Richardson, J.D., Characteristics of the interplanetary coronal mass ejections in the heliosphere between 0.3 and 5.4 AU (2005) J. Geophys. Res. (Space Physics), 110, p. 10107
  • Wang, Y.M., Ye, P.Z., Wang, S., Multiple magnetic clouds: Several examples during March-April 2001 (2003) J. Geophys. Res. (Space Physics), 108, p. 1370
  • Wang, Y.M., Ye, P.Z., Wang, S., Zhou, G.P., Wang, J.X., A statistical study on the geoeffectiveness of Earth-directed coronal mass ejections from March 1997 to December 2000 (2002) J. Geophys. Res. (Space Physics), 107, p. 1340
  • Webb, D.F., Hundhausen, A.J., Activity associated with the solar origin of coronal mass ejections (1987) Sol. Phys., 108, pp. 383-401
  • Webb, D.F., Lepping, R.P., Burlaga, L.F., Deforest, C.E., Larson, D.E., Martin, S.F., Plunkett, S.P., Rust, D.M., The origin and development of the May 1997 magnetic cloud (2000) J. Geophys. Res., 105, pp. 27251-27260
  • Xiong, M., Zheng, H., Wang, S., Magnetohydrodynamic simulation of the interaction between two interplanetary magnetic clouds and its consequent geoeffectiveness: 2 Oblique collision (2009) J. Geophys. Res. (Space Physics), 114, p. 11101
  • Xiong, M., Zheng, H., Wu, S.T., Wang, Y., Wang, S., Magnetohydrodynamic simulation of the interaction between two interplanetary magnetic clouds and its consequent geoeffectiveness (2007) J. Geophys. Res. (Space Physics), 112, p. 11103
  • Zhang, J., Dere, K.P., Howard, R.A., Bothmer, V., Identification of Solar Sources of Major Geomagnetic Storms between 1996 and 2000 (2003) Astrophys. J., 582, pp. 520-533
  • Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Zhukov, A.N., Solar and interplanetary sources of major geomagnetic storms (Dst ≤ - 100 nT) during 1996-2005 (2007) J. Geophys. Res. (Space Physics), 112, p. 10102
  • Zhao, X., Feng, X., Wu, C.-C., Characteristics of solar flares associated with interplanetary shock or nonshock events at Earth (2006) Jour. of Geophys. Res. (Space Physics), 111 (A10), p. 09103
  • Zirin, H., Liggett, M.A., Delta spots and great flares (1987) Sol. Phys., 113, pp. 267-281

Citas:

---------- APA ----------
Szajko, N.S., Cristiani, G., Mandrini, C.H. & Dal Lago, A. (2013) . Very intense geomagnetic storms and their relation to interplanetary and solar active phenomena. Advances in Space Research, 51(10), 1842-1856.
http://dx.doi.org/10.1016/j.asr.2012.03.006
---------- CHICAGO ----------
Szajko, N.S., Cristiani, G., Mandrini, C.H., Dal Lago, A. "Very intense geomagnetic storms and their relation to interplanetary and solar active phenomena" . Advances in Space Research 51, no. 10 (2013) : 1842-1856.
http://dx.doi.org/10.1016/j.asr.2012.03.006
---------- MLA ----------
Szajko, N.S., Cristiani, G., Mandrini, C.H., Dal Lago, A. "Very intense geomagnetic storms and their relation to interplanetary and solar active phenomena" . Advances in Space Research, vol. 51, no. 10, 2013, pp. 1842-1856.
http://dx.doi.org/10.1016/j.asr.2012.03.006
---------- VANCOUVER ----------
Szajko, N.S., Cristiani, G., Mandrini, C.H., Dal Lago, A. Very intense geomagnetic storms and their relation to interplanetary and solar active phenomena. Adv. Space Res. 2013;51(10):1842-1856.
http://dx.doi.org/10.1016/j.asr.2012.03.006