Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Adequate representations of diverse dynamical processes in general circulation models (GCM) are necessary to obtain reliable simulations of the present and the future. The parameterization of orographic gravity wave drag (GWD) is one of the critical components of GCM. It is therefore convenient to evaluate whether standard orographic GWD parameterizations are appropriate. One alternative is to study the generation of gravity waves (GW) with horizontal resolutions that are higher than those used in current GCM simulations. Here we assess the seasonal pattern of topographic GW momentum flux (GWMF) generation for the late 20th and 21st centuries in a downscaling using the Rossby Centre regional atmospheric model under the Intergovernmental Panel on Climate Change A1B emission conditions. We focus on one of the world's strongest extra-tropical GW zones, the Andes Mountains at mid-latitudes in the Southern Hemisphere. The presence of two GCM sub-grid scale structures locally contributing to GWMF (one positive and one negative) is found to the East of the mountains. For the late 21st century the strength of these structures during the GW high season increases around 23% with respect to the late 20th century, but the GWMF average over GCM grid cell scales remains negative and nearly constant around -0.015 Pa. This constitutes a steady significant contribution during GW high season, which is not related to the GWMF released by individual sporadic strong GW events. This characteristic agrees with the fact that no statistically significant variation in GWMF at source level has been observed in recent GCM simulations of atmospheric change induced by increases in greenhouse gases. © 2011 COSPAR. Published by Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Gravity wave momentum flux generation close to mid-latitude Andes in mesoscale simulations of late 20th and 21st centuries
Autor:Alexander, P.; Ruscica, R.; Sörensson, A.A.; Menéndez, C.G.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Centro de Investigaciones Del Mar y la Atmósfera, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Departamento de Ciencias de la Atmósfera y Los Océanos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Palabras clave:Gravity waves; Momentum; Numerical simulations; 20th century; Atmospheric changes; Atmospheric model; Critical component; Down-scaling; Dynamical process; General circulation model; Gravity wave momentum; Grid cells; Horizontal resolution; Intergovernmental panel on climate changes; Mesoscale simulation; Midlatitudes; Momentum flux; Orographic gravity waves; Parameterizations; Seasonal patterns; Source level; Southern Hemisphere; Subgrid scale; Climate models; Global warming; Gravity waves; Greenhouse gases; Hydrodynamics; Landforms; Momentum; Waves; Computer simulation
Año:2011
Volumen:48
Número:8
Página de inicio:1359
Página de fin:1370
DOI: http://dx.doi.org/10.1016/j.asr.2011.06.020
Título revista:Advances in Space Research
Título revista abreviado:Adv. Space Res.
ISSN:02731177
CODEN:ASRSD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02731177_v48_n8_p1359_Alexander

Referencias:

  • Alexander, M.J., Interpretations of observed climatological patterns in stratospheric gravity wave variance (1998) Journal of Geophysical Research D: Atmospheres, 103 (D8), pp. 8627-8640
  • Alexander, P., Luna, D., Llamedo, P., De La Torre, A., A gravity waves study close to the Andes mountains in Patagonia and Antarctica with GPS radio occultation observations (2010) Ann. Geophys., 28, pp. 587-595
  • Andrews, D.G., Holton, J.R., Leovy, C.B., (1987) Middle Atmosphere Dynamics, , p. 489 Academic Press Orlando
  • Bacmeister, J.T., Schoeberl, M.R., Lait, L.R., ER-2 Mountain wave enconter over Antarctica: Evidence for blocking (1990) Geophys. Res. Lett., 17, pp. 81-84
  • Bacmeister, J.T., Eckermann, S.D., Newman, P.A., Stratospheric horizontal wavenumber spectra of winds, potential temperature, and atmospheric tracers observed by high-altitude aircraft (1996) J. Geophys. Res., 101, pp. 9441-9470
  • Baines, P.G., (1995) Topographic Effects in Stratified Fluids, , p. 482 Cambridge University Press New York
  • Chen, C.-C., Durran, D.R., Hakim, G.J., Mountain-wave momentum flux in an evolving synoptic-scale flow (2005) Journal of the Atmospheric Sciences, 62 (9), pp. 3213-3231. , DOI 10.1175/JAS3543.1
  • De La Torre, A., Alexander, P., Gravity waves above Andes detected from GPS radio occultation temperature profiles: Mountain forcing? (2005) Geophysical Research Letters, 32 (17), pp. 1-4. , DOI 10.1029/2005GL022959, L17815
  • De La Torre, A., Alexander, P., Llamedo, P., Recent advances in gravity wave analysis from long term global GPS radio occultation observations (2009) New Horizons in Occultation Research, p. 316. , Springer-Verlag Berlin
  • Eckermann, S.D., Preusse, P., Global measurements of tratopheric mountain waves from space (1999) Science, 286, pp. 1534-1537
  • Ern, M., Preusse, P., Alexander, M.J., Warner, C.D., Absolute values of gravity wave momentum flux derived from satellite data (2004) Journal of Geophysical Research D: Atmospheres, 109 (20), pp. D201031-D2010317. , DOI 10.1029/2004JD004752
  • Eyring, V., Waugh, D.W., Bodeker, G.E., Cordero, E., Akiyoshi, H., Austin, J., Beagley, S.R., Yoshiki, M., Multimodel projections of stratospheric ozone in the 21st century (2007) Journal of Geophysical Research D: Atmospheres, 112 (16), pp. D16303. , DOI 10.1029/2006JD008332
  • Fetzer, E.J., Gille, J.C., Gravity wave variance in LIMS temperatures. Part I: Variability and comparison with background winds (1994) J. Atmos. Sci., 51, pp. 2461-2483
  • Forster, P.M., Shine, K.P., Assessing the climate impact and its uncertainty for trends in stratospheric water vapor (2002) Geophys. Res. Lett., 29. , 10.1029/2001GL01390
  • Fritts, D.C., Alexander, J., Gravity wave dynamics and effects in the middle atmosphere (2003) Rev. Geophys., 41, p. 1003. , 10.1029/2001RG000106
  • Garcia, R.R., Randel, W.J., Acceleration of the Brewer-Dobson circulation due to increases in greenhouse gases (2008) J. Atmos. Sci., 65, pp. 2731-2739
  • Gill, A., (1982) Atmosphere-Ocean Dynamics, , p. 645 Academic Press New York
  • Hamming, R.W., (1998) Digital Filters, , third ed. Dover Publications Mineola
  • Hines, C.O., Internal atmospheric gravity waves at ionospheric heights (1960) Can. J. Phys., 38, pp. 1441-1481
  • Hong, S.-Y., Choi, J., Chang, E.-C., Lower tropospheric enhancement of gravity wave drag in a global spectral atmospheric forecast model (2008) Weather Forecast., 23, pp. 523-531
  • Jungclaus, J.H., Keenlyside, N., Botzet, M., Haak, H., Luo, J.-J., Latif, M., Marotzke, J., Roeckner, E., Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM (2006) Journal of Climate, 19 (16), pp. 3952-3972. , DOI 10.1175/JCLI3827.1
  • Kim, Y.-J., Eckermann, S.D., Chun, H.-Y., An overview of the past, present and future of gravity-wave drag parametrization for numerical climate and weather prediction models (2003) Atmosphere - Ocean, 41 (1), pp. 65-98
  • Kjellström, E., Bärring, L., Gollvik, S., A 140-year simulation of European climate with the new version of the Rossby Centre regional atmospheric climate model (RCA3) (2005) Reports Meteorology and Climatology No. 108, p. 54. , SMHI, SE-60176 Norrkping, Sweden
  • Lappen, C.-L., Randall, D.A., Toward a unified parameterization of the boundary layer and moist convection. Part I: A new type of mass-flux model (2001) Journal of the Atmospheric Sciences, 58 (15), pp. 2021-2036. , DOI 10.1175/1520-0469(2001)058<2021:TAUPOT>2.0.CO;2
  • Li, F., Austin, J., Wilson, J., The strength of the Brewer-Dobson circulation in a changing climate: Coupled chemistry-climate model simulations (2008) Journal of Climate, 21 (1), pp. 40-57. , http://ams.allenpress.com/archive/1520-0442/21/1/pdf/i1520-0442-21-1-40. pdf, DOI 10.1175/2007JCLI1663.1
  • Lindzen, R., Wave-mean flow interactions in the upper atmosphere (1973) Boundary Layer Meteorol., 4, pp. 327-343
  • Lott, F., Miller, M.J., A new subgrid-scale orographic drag parametrization: Its formulation and testing (1997) Q. J. R. Meteorol. Soc., 123, pp. 101-127
  • Lovejoy, S., Tuck, A.F., Hovde, S.J., Schertzer, D., Vertical cascade structure of the atmosphere and multifractal dropsonde outages (2009) J. Geophys. Res., 114, p. 07111. , 10.1029/2008JD010651
  • Marengo, J.A., Jones, R., Alves, L.M., Valverde, M.C., Future change of precipitation and temperature extremes in South America as derived from the PRECIS regional climate modeling system (2009) Int. J. Climatol., , 10.1002/joc.1863
  • McFarlane, N.A., The effect of orographically excited gravity-wave drag on the general circulation of the lower stratosphere and troposphere (1987) J. Atmos. Sci., 44, pp. 1775-1800
  • McLandress, C., Shepherd, T.G., Simulated anthropogenic changes in the Brewer-Dobson circulation, including its extension to high latitudes (2009) J. Climate, 22, pp. 1516-1540
  • Nappo, C.J., (2002) An Introduction to Atmospheric Gravity Waves, , Academic Press San Diego
  • Palmer, T.N., Shutts, G.J., Swinbank, R., Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parametrization (1986) Q. J. R. Meteorol. Soc., 112, pp. 1001-1039
  • Pierrehumbert, R.T., Wyman, B., Upstream effects of mesoscale mountains (1985) J. Atmos. Sci., 42, pp. 977-1003
  • Preusse, P., Eckermann, S.D., Offermann, D., Comparison of global distributions of zonal-mean gravity wave variance inferred from different satellite instruments (2000) Geophysical Research Letters, 27 (23), pp. 3877-3880. , DOI 10.1029/2000GL011916
  • Preusse, P., Dörnbrack, A., Eckermann, S.D., Space based measurements of stratospheric mountain waves by CRISTA: 1. Sensitivity, analysis method, and a case study (2002) J. Geophys. Res., 107, p. 8178. , 10.1029/2001JD000699
  • Preusse, P., Eckermann, S.D., Ern, M., Transparency of the atmosphere to short horizontal wavelength gravity waves (2008) J. Geophys. Res., 113, p. 24104. , 10.1029/2007JD009682
  • Rind, D., Suozzo, R., Balachandran, N.K., Prather, M.J., Climate change and the middle atmosphere. 1: The doubled CO2 climate (1990) J. Atmos. Sci., 47, pp. 475-494
  • Roeckner, E., Bäuml, G., Bonaventura, L., The atmospheric general circulation model ECHAM5 (2003) Part I: Model Description, Rep. 349, p. 127. , Max-Planck-Institut fr Meteorologie, Hamburg
  • Rontu, L., (2007) Studies on Orographic Effects in A Numerical Weather Prediction Model, , No. 63, p. 61 Finish Meteorological Institute Helsinki
  • Scinocca, J.F., McFarlane, N.A., The parameterization of drag induced by stratified flow over anisotropic orography (2000) Q. J. R. Meteorol. Soc., 126, pp. 2353-2393
  • Shutts, G.J., Kitchen, M., Hoare, P.H., A large amplitude gravity wave in the lower stratosphere detected by radiosonde (1988) Q. J. R. Meteorol. Soc., 114, pp. 579-594
  • Sigmond, M., Scinocca, J.F., Kushner, P.J., Impact of the stratosphere on tropospheric climate change (2008) Geophys. Res. Lett., 35, p. 12706. , 10.1029/2008GL033573
  • Sigmond, M., Scinocca, J.F., The influence of the basic state on the Northern Hemisphere circulation response to climate change (2010) J. Climate, 23, pp. 1434-1446
  • Smith, R.B., Stratified flow over topography (2001) Environmental Stratified Flows, pp. 121-159. , R. Grimshaw, Kluwer London
  • Solomon, S., Rosenlof, K.H., Portmann, R.W., Contributions of stratospheric water vapor to decadal changes in the rate of global warming (2010) Science, 327, pp. 1219-1223
  • Sörensson, A.A., Menéndez, C.G., Ruscica, R., Projected precipitation changes in South America: A dynamical downscaling within CLARIS (2010) Meteorol. Z., 19, pp. 347-355
  • Stein, J., Investigation of the regime diagram of hydrostatic flow over a mountain with a primitive equation model. Part I: Two-dimensional flows (1992) Monthly Weather Review, 120 (12), pp. 2962-2976
  • Tsuda, T., Nishida, M., Rocken, C., Ware, R.H., A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET) (2000) J. Geophys. Res., 105, pp. 7257-7273
  • Walterscheid, R.L., Gravity wave transports and their effects on the large-scale circulation of the upper mesosphere and lower thermosphere (2001) Advances in Space Research, 27 (10), pp. 1713-1721. , DOI 10.1016/S0273-1177(01)00298-8, PII S0273117701002988, Middle atomosphere temporal and spatial structures
  • Webster, S., Brown, A.R., Cameron, D.R., Jones, C.P., Improvements to the representation of orography in the Met Office Unified Model (2003) Quarterly Journal of the Royal Meteorological Society, 129 (591 PART B), pp. 1989-2010. , DOI 10.1256/qj.02.133
  • Wu, D.L., Waters, J.W., Satellite observations of atmospheric variances: A possible indication of gravity waves (1996) Geophys. Res. Lett., 23, pp. 3631-3634
  • Wu, D.L., Mesoscale gravity wave variances from AMSU-A radiances (2004) Geophysical Research Letters, 31 (12), pp. L121141-L121144. , DOI 10.1029/2004GL019562
  • Wu, D.L., Preusse, P., Eckermann, S.D., Jiang, J.H., Juarez, M.D.L.T., Coy, L., Wang, D.Y., Remote sounding of atmospheric gravity waves with satellite limb and nadir techniques (2006) Advances in Space Research, 37 (12), pp. 2269-2277. , DOI 10.1016/j.asr.2005.07.031, PII S0273117705009257
  • Zulicke, C., Peters, D., Simulation of inertia-gravity waves in a poleward-breaking Rossby wave (2006) Journal of the Atmospheric Sciences, 63 (12), pp. 3253-3276. , DOI 10.1175/JAS3805.1

Citas:

---------- APA ----------
Alexander, P., Ruscica, R., Sörensson, A.A. & Menéndez, C.G. (2011) . Gravity wave momentum flux generation close to mid-latitude Andes in mesoscale simulations of late 20th and 21st centuries. Advances in Space Research, 48(8), 1359-1370.
http://dx.doi.org/10.1016/j.asr.2011.06.020
---------- CHICAGO ----------
Alexander, P., Ruscica, R., Sörensson, A.A., Menéndez, C.G. "Gravity wave momentum flux generation close to mid-latitude Andes in mesoscale simulations of late 20th and 21st centuries" . Advances in Space Research 48, no. 8 (2011) : 1359-1370.
http://dx.doi.org/10.1016/j.asr.2011.06.020
---------- MLA ----------
Alexander, P., Ruscica, R., Sörensson, A.A., Menéndez, C.G. "Gravity wave momentum flux generation close to mid-latitude Andes in mesoscale simulations of late 20th and 21st centuries" . Advances in Space Research, vol. 48, no. 8, 2011, pp. 1359-1370.
http://dx.doi.org/10.1016/j.asr.2011.06.020
---------- VANCOUVER ----------
Alexander, P., Ruscica, R., Sörensson, A.A., Menéndez, C.G. Gravity wave momentum flux generation close to mid-latitude Andes in mesoscale simulations of late 20th and 21st centuries. Adv. Space Res. 2011;48(8):1359-1370.
http://dx.doi.org/10.1016/j.asr.2011.06.020