Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Films based on polylactic acid (PLA) reinforced with multi-walled carbon nanotubes (MWCNT) were developed after using an excellent methodology to ensure an optimum dispersion of the filler in the matrix. The functionalization of MWCNT was carried out through a Fenton reaction to generate hydroxyl (OH) and carboxyl (COOH) groups on their walls. After that, COOH groups were lengthened by reacting with thionyl chloride and then with triethylene glycol to achieve a terminal OH distanced from the wall of the MWCNT. Nanocomposites based on PLA containing different concentrations of functionalized filler (fMWCNT: 0.026, 0.10, and 0.18 wt%) were prepared by casting. The influence of filler concentration was investigated using some techniques such as scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), water vapor permeability (WVP) and uniaxial tensile mechanical properties. Excellent dispersion of fMWCNT was observed suggesting that the technique of functionalization used was appropriate. All nanocomposites presented great stability, allowing them to be processed to temperatures reaching 300°C. Furthermore, an increasing trend of ultimate tensile strength (σu) up to 20% and a decrease of WVP around 40% with the addition of only 0.10 wt% of fMWCNT were obtained. Considering these results, the new biodegradable nanocomposites developed in this work could be very promising to replace synthetic plastics that currently are used in different areas such as nanotechnology, packaging and biomedicine. POLYM. COMPOS., 37:3066–3072, 2016. © 2015 Society of Plastics Engineers. © 2015 Society of Plastics Engineers

Registro:

Documento: Artículo
Título:Promising PLA-functionalized MWCNT composites to use in nanotechnology
Autor:Seligra, P.G.; Lamanna, M.; Famá, L.
Filiación:LPMC, Dep. de Física, Facultad de Ciencias Exactas y Naturales and IFIBA-CONICET, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Buenos Aires, Argentina
Palabras clave:Biodegradable polymers; Carbon films; Chlorine compounds; Dispersions; Fillers; Fourier transform infrared spectroscopy; Mechanical permeability; Mechanical properties; Nanocomposites; Nanotechnology; Reinforced plastics; Scanning electron microscopy; Tensile strength; Thermogravimetric analysis; Yarn; Biodegradable nanocomposites; Filler concentration; Fourier transform infra red (FTIR) spectroscopy; Functionalizations; Functionalized-MWCNT; Triethylene glycol; Ultimate tensile strength; Water vapor permeability; Multiwalled carbon nanotubes (MWCN)
Año:2016
Volumen:37
Número:10
Página de inicio:3066
Página de fin:3072
DOI: http://dx.doi.org/10.1002/pc.23504
Título revista:Polymer Composites
Título revista abreviado:Polym Compos
ISSN:02728397
CODEN:PCOMD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02728397_v37_n10_p3066_Seligra

Referencias:

  • Ajayan, P.M., (1999) Chem. Rev, 99, p. 1787
  • Avérous, L., Boquillon, N., (2004) Carbohydr. Polym, 56, p. 111
  • Harrison, B.S., Atala, A., (2007) Biomaterials, 28, p. 344
  • Famá, L., Rojo, P.G., Bernal, C., Goyanes, S., (2012) Carbohydr. Polym, 87, p. 1989
  • Lu, X., Chen, Z.X., (2005) Chem. Rev, 105, p. 3643
  • Tsai, Y.-C., Chen, S.-Y., Liaw, H.-W., (2007) Sens. Actuators B, 125, p. 474
  • Wang, Y., Rakotonirainy, M., Papua, W., (2003) Starch/Stärke, 55, p. 25
  • Wu, C.-S., Liao, H.-T., (2007) Polymer, 48, p. 4449
  • Tong, X., El-Zahab, B., Zhao, X., Liu, Y., Wang, P., (2001) Biotechnol. Bioeng, 108, p. 465
  • Vieira, M., da Silva, M., dos Santos, L., Beppu, M., (2011) Eur. Polym. J, 47, p. 254
  • Seligra, P., Nuevo, F., Lamanna, M., Famá, L., (2013) Compos. B, 46, p. 61
  • Famá, L., Goyanes, S., Gerschenson, L., (2007) Carbohydr. Polym, 70, p. 265
  • García, N.L., Famá, L., Dufresne, A., Aranguren, M., Goyanes, S., (2009) Food Res. Int, 42, p. 976
  • Siqueira, G., Bras, J., Dufresne, A., (2009) Biomacromolecules, 10, p. 425
  • Rudnik, E., Compostable Polymer Properties and Packaging Applications (2013) Plastic Films in Food Packaging, p. 217. , ” in, S. Ebnesajjad, Ed.,, Plastics Design Library; Elsevier
  • Zhang, Z., Ortiz, O., Goyal, R., Kohn, J., Biodegradable Polymers, (2014) Principles of Tissue Engineering, p. 441. , in, R. Lanza, R. Langer, J.P. Vacanti, Eds.,, Academic Press, US
  • Lim, L.-T., Auras, R., Rubino, M., (2008) Prog. Polym. Sci, 33, p. 820
  • Auras, R., Lim, L.T., Selke, S.E.M., Tsuji, H., (2010) Poly(lactic acid): Synthesis, Structures, Properties, Processing, and Application, , Hoboken, New Jersey
  • Hansen, N.M., Plackett, D., (2008) Biomacromolecules, 9, p. 1494
  • Bocchini, S., Fukushima, K., Di Blasio, A., Fina, A., Frache, A., Geobaldo, F., (2010) Biomacromolecules, 11, p. 2919
  • Sapuan, S., Mustapha, F., Majid, D., Leman, Z., Ariff, A., Ariffin, M., Zuhri, M., Sahari, J., (2011) Key Eng. Mater, 471, p. 1095
  • Kumar, B., Castro, M., Feller, J.-F., (2012) Mater. Chem, 22, p. 621
  • Ma, P., Siddiqui, N., Marom, G., Kim, J., (2010) Compos. A, 41, p. 1345
  • Armentano, I., Dottori, M., Fortunati, E., Mattioli, S., Kenny, J., (2010) Polym. Degrad. Stabil, 95, p. 2126
  • Komarov, F., Mironov, A., (2004) Phys. Chem. Solid State, 5, p. 411
  • Lu, J., (1997) J. Phys. Chem. Solids, 158, p. 1649
  • Yu, M.-F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., Ruoff, R.S., (2000) Science, 287, p. 637
  • Wei, C., Cho, K., Srivastava, D., (2003) Appl. Phys. Lett, 82, p. 2513
  • Dresselhaus, M.S., Dresselhaus, G., Avorius, P., (2001) Carbon Nanotubes: Synthesis Structure, Properties and Applications. Topics in Applied Physics, , Springer, New York
  • Matayabas, J.C., Turner, S.R., Nanocomposite Technology for Enhancing the Gas Barrier of Polyethylene Terephthalate (2000) Polymer-Clay Nanocomposites, , ” in, T.J. Pinnavaia, G.W. Beall, Eds.,, Chichester and New York, Wiley, England
  • Sung, Y.T., Kum, C.K., Lee, H.S., Byon, N.S., Yoon, H.G., Kim, W.N., (2005) Polymer, 46, p. 5656
  • De Azeredo, H.M.C., (2009) Food Res. Int, 42, p. 1240
  • Bose, S., Khare, R.S., Moldenaers, P., (2010) Polymer, 51, p. 975
  • Zapata-Solvas, E., Gomez-García, D., Poyato, R., Lee, Z., (2010) Am. Ceram. Soc, 59, p. 1464
  • ElAmin, A., (2008), http://www.foodproductiondaily.com/news/ng.asp?id=79393nanotechnologypathogens-ecoli, “Carbon Nanotubes Could be New Pathogen Weapon,” in, FoodProductionDaily.com Europe; Lyons, K., (2010) Nanotechnology: Transforming Food and the Environment, , Food First Backgrounder, Springer
  • Jin, L., Bower, C., Zhou, O., (1998) Appl. Phys. Lett, 73, p. 1197
  • Qian, D., Dickey, E.C., Andrews, R., Rantell, T., (2000) Appl. Phys. Lett, 76, p. 2868
  • Bourbigot, S., Fontaine, G., Gallos, A., Bellayer, S., (2011) Polym. Adv. Technol, 22, p. 30
  • Ramontja, J., Ray, S.S., Pillai, S.K., Luyt, A.S., (2009) Macromol. Mater. Eng, 294, p. 839
  • Seligra, P.G., Lamanna, M., Famá, L., Proc. Mater. Sci, , in press
  • Bandyopadhyaya, R., Nativ-Roth, E., Regev, Q., Yerushalmi-Rozen, R., Sheva, B., (2002) Nano Lett, 2, p. 25
  • Ajayan, P.M., Zhou, O., Applications of Carbon Nanotubes (2001) Carbon Nantubes, p. 391. , ” in, M.S. Dresselhaus, G. Dresselhaus, P. Avouris, Eds.,, Springer Berlin Heidelberg, New York
  • Upadhyayula, V.K.K., Deng, S., Mitchell, M.C., Smith, G.B., (2009) Sci. Total Environ, 408, p. 1
  • Famá, L.M., Pettarin, V., Goyanes, S.N., Bernal, C.R., (2011) Carbohydr. Polym, 83, p. 1226
  • Gennadios, A., Weller, C.L., Gooding, C.H., (1994) Food Eng, 21, p. 395
  • Suhr, J., Zhang, W., Ajayan, P., Koratkar, N., (2006) Nano Lett, 6, p. 219
  • Ajayan, P.M., Zhou, O.Z., (2006) Appl. Phys, 80, p. 391
  • Escobar, M., Goyanes, S., Corcuera, M.A., Eceiza, A., Mondragon, I., Rubiolo, G., Candal, R., (2009) J. Nanosci. Nanotechnol, 9, p. 6228
  • Hsieh, Y.-C., Chou, Y.-C., Lin, C.-P., Hsieh, T.-F., Shu, C.-M., (2010) Aerosol Air Qual. Res, 10, p. 212
  • Hapuarachchi, T.D., Peijs, T., (2010) Compos. A, 41, p. 954
  • Bhattacharyya, A.R., Pötschke, P., Abdel-Goad, M., Fischer, D., (2003) Chem. Phys. Lett, 392, p. 28
  • Wilhelm, H.-M., Sierakowski, M.-R., Souza, G.P., Wypych, F., (2003) Carbohydr. Polym, 52, p. 101
  • Coleman, J.N., Cadek, M., Blake, R., Nicolosi, V., Ryan, K.P., Belton, C., Fonseca, A., Blau, W.J., (2004) Adv. Func. Mater, 14, p. 791
  • Wang, N., Zhang, X., Ma, X., Fang, J., (2008) Polym. Degrad. Stabil, 93, p. 1044
  • Szymczyk, A., Roslaniec, Z., Zenker, M., García-Gutiérrez, M.C., Hernández, J.J., Rueda, D.R., Nogales, A., Ezquerra, T.A., (2011) Express Polym. Lett, 5, p. 977
  • Rhim, J.-W., Hong, S.-I., Ha, C.-S., (2009) LWT, 42, p. 612
  • Pinnavaia, T., Beall, G., (2000) Polymer-Clay Nanocomposites, , Wiley, England
  • Kristo, E., Biliaderis, C.G., (2007) Carbohydr. Polym, 68, p. 146
  • Jamshidian, M., Tehrany, E.A., Imran, M., Akhtar, M.J., Cleymand, F., Desobry, S., (2012) Food Eng, 110, p. 380

Citas:

---------- APA ----------
Seligra, P.G., Lamanna, M. & Famá, L. (2016) . Promising PLA-functionalized MWCNT composites to use in nanotechnology. Polymer Composites, 37(10), 3066-3072.
http://dx.doi.org/10.1002/pc.23504
---------- CHICAGO ----------
Seligra, P.G., Lamanna, M., Famá, L. "Promising PLA-functionalized MWCNT composites to use in nanotechnology" . Polymer Composites 37, no. 10 (2016) : 3066-3072.
http://dx.doi.org/10.1002/pc.23504
---------- MLA ----------
Seligra, P.G., Lamanna, M., Famá, L. "Promising PLA-functionalized MWCNT composites to use in nanotechnology" . Polymer Composites, vol. 37, no. 10, 2016, pp. 3066-3072.
http://dx.doi.org/10.1002/pc.23504
---------- VANCOUVER ----------
Seligra, P.G., Lamanna, M., Famá, L. Promising PLA-functionalized MWCNT composites to use in nanotechnology. Polym Compos. 2016;37(10):3066-3072.
http://dx.doi.org/10.1002/pc.23504