Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

(1) We evaluated the involvement of brain mitochondrial and microsomal cytochrome P-450 in the metabolization of known porphyrinogenic agents, with the aim of improving the knowledge on the mechanism leading to porphyric neuropathy. We also compared the response in brain, liver and kidney. To this end, we determined mitochondrial and microsomal cytochrome P-450 levels and the activity of NADPH cytochrome P-450 reductase. (2) Animals were treated with known porphyrinogenic drugs such as volatile anaesthetics, allylisopropylacetamide, veronal, griseofulvin and ethanol or were starved during 24 h. Cytochrome P-450 levels and NADPH cytochrome P-450 reductase activity were measured in mitochondrial and microsomal fractions from the different tissues. (3) Some of the porphyrinogenic agents studied altered mitochondrial cytochrome P-450 brain but not microsomal cytochrome P-450. Oral griseofulvin induced an increase in mitochondrial cytochrome P-450 levels, while chronic Isoflurane produced a reduction on its levels, without alterations on microsomal cytochrome P-450. Allylisopropylacetamide diminished both mitochondrial and microsomal cytochrome P-450 brain levels; a similar pattern was detected in liver. Mitochondria cytochorme P-450 liver levels were only diminished after chronic Isoflurane administration. In kidney only mitochondrial cytochrome P-450 levels were modified by veronal; while in microsomes, only acute anaesthesia with Enflurane diminished cytochrome P-450 content. (4) Taking into account that δ-aminolevulinic acid would be responsible for porphyric neuropathy, we investigated the effect of acute and chronic δ-aminolevulinic acid administration. Acute δ-aminolevulinic acid administration reduced brain and liver cytochrome P-450 levels in both fractions; chronic δ-aminolevulinic acid administration diminished only liver mitochondrial cytochrome P-450. (5) Brain NADPH cytochrome P-450 reductase activity in animals receiving allylisopropylacetamide, dietary griseofulvin and δ-aminolevulinic acid showed a similar profile as that for total cytochrome P-450 levels. The same response was observed for the hepatic enzyme. (6) Results here reported revealed differential tissue responses against the xenobiotics assayed and give evidence on the participation of extrahepatic tissues in porphyrinogenic drug metabolization. These studies have demonstrated the presence of the integral Phase I drug metabolizing system in the brain, thus, total cytochrome P-450 and associated monooxygenases in brain microsomes and mitochondria would be taken into account when considering the xenobiotic metabolizing capability of this organ. © 2007 Springer Science+Business Media, LLC.

Registro:

Documento: Artículo
Título:Metabolization of porphyrinogenic agents in brain: Involvement of the Phase I drug metabolizing system. A comparative study in liver and kidney
Autor:Lavandera, J.V.; Batlle, A.M.D.C.; Buzaleh, A.M.
Filiación:Centro de Investigaciones Sobre Porfirinas Y Porfirias (CIPYP), Hospital de Clínicas José de San Martín, University of Buenos Aires, Viamonte 188l 10, A, Buenos Aires C1056ABA, Argentina
Department of Biological Chemistry, Facultad de Ciencias Exactas Y Naturales, University of Buenos Aires, Buenos Aires, Argentina
Palabras clave:δ-Aminolevulinic acid; Cytochrome P-450; Drug metabolizing system; NADPH Cytochrome P-450 reductase; Porphyrinogenic drugs; alcohol; allylisopropylacetamide; aminolevulinic acid; barbital; cytochrome P450; enflurane; griseofulvin; inhalation anesthetic agent; liver enzyme; porphyrinogen; reduced nicotinamide adenine dinucleotide phosphate ferrihemoprotein reductase; xenobiotic agent; anesthesia; animal experiment; article; brain; brain mitochondrion; comparative study; controlled study; enzyme activity; kidney; liver; male; metabolism; microsome; mouse; neuropathy; nonhuman; porphyria; priority journal; xenobiotic metabolism; Allylisopropylacetamide; Aminolevulinic Acid; Animals; Barbital; Brain; Cytochrome P-450 Enzyme System; Ethanol; Griseofulvin; Hypnotics and Sedatives; Kidney; Liver; Male; Metabolic Detoxication, Phase I; Mice; Microsomes; Mitochondria; NADPH-Ferrihemoprotein Reductase; Photosensitizing Agents; Porphyria, Acute Intermittent; Animalia
Año:2007
Volumen:27
Número:6
Página de inicio:717
Página de fin:729
DOI: http://dx.doi.org/10.1007/s10571-007-9154-0
Título revista:Cellular and Molecular Neurobiology
Título revista abreviado:Cell. Mol. Neurobiol.
ISSN:02724340
CODEN:CMNED
CAS:alcohol, 64-17-5; allylisopropylacetamide, 299-78-5; aminolevulinic acid, 106-60-5; barbital, 144-02-5, 57-44-3; cytochrome P450, 9035-51-2; enflurane, 13838-16-9; griseofulvin, 126-07-8; porphyrinogen, 4396-11-6; reduced nicotinamide adenine dinucleotide phosphate ferrihemoprotein reductase, 9023-03-4; Allylisopropylacetamide, 299-78-5; Aminolevulinic Acid, 106-60-5; Barbital, 57-44-3; Cytochrome P-450 Enzyme System, 9035-51-2; Ethanol, 64-17-5; Griseofulvin, 126-07-8; Hypnotics and Sedatives; NADPH-Ferrihemoprotein Reductase, EC 1.6.2.4; Photosensitizing Agents
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02724340_v27_n6_p717_Lavandera

Referencias:

  • Anandatheerthavarada, H.K., Shankar, S.K., Ravindranath, V., Rat brain cytochromes P-450: Catalytic, immunochemical properties and inducibility of multiple forms (1990) Brain Res, 526, pp. 339-343
  • Anandatheerthavarada, H.K., Shankar, S.K., Bhamre, S., Boyd, M.R., Song, B.J., Ravindranath, V., Induction of brain cytochrome P-450IIE1 by chronic ethanol treatment (1993) Brain Res, 601, pp. 279-285
  • Batlle, A.M., Porfirias y Porfirinas. Aspectos clínicos, bioquímicos y biología molecular (1997) Acta Bioquím. Clin. Latinoam. Suppl., (3)
  • Bergh, A.F., Strobel, H.W., Reconstitution of the brain mixed function oxidase system: Purification of NADPH-cytochrome P450 reductase and partial purification of cytochrome P450 from whole brain (1992) J Neurochem, 59, pp. 575-581
  • Bhagwat, S.V., Boyd, M.R., Ravindranath, V., Multiple forms of cytochrome P450 and associated monooxygenase activities in human brain mitochondria (2000) Biochem Pharmacol, 59, pp. 573-582
  • Buzaleh, A.M., Vazquez, E.S., Nuñez, G., Batlle, A.M., Effect of chronic anesthesia on the drug-metabolizing enzime system and heme pathway regulation (1997) Gen Pharmac, 28, pp. 577-582
  • De Matteis, F., Marks, G.S., Cytochrome P450 and its interactions with the heme biosynthetic pathway (1996) Can J Physiol Pharmacol, 74, pp. 1-8
  • Ennis, S.R., Novotny, A., Xiang, J., Shakui, P., Masada, T., Stummer, W., Smith, D.E., Keep, R.F., Transport of 5-aminolevulinic acid between blood and brain (2003) Brain Res, 959, pp. 226-234
  • Garcia, S.C., Moretti, M.B., Garay, M.V., Batlle, A., Delta-aminolevulinic acid transport through blood-brain barrier (1998) Gen Pharmacol, 31, pp. 579-582
  • Gervasini, G., Carrillo, J.A., Benitez, J., Potential role of cerebral cytochrome P450 in clinical pharmacokinetics (2004) Clin Pharmacokinet, 43, pp. 693-706
  • Ghersi-Egea, J.F., Perrin, R., Leininger-Muller, B., Grassiot, M.C., Jeandel, C., Floquet, J., Cuny, G., Minn, A., Subcellular localization of cytochrome P450, and activities of several enzymes responsible for drug metabolism in the human brain (1993) Biochem Pharmacol, 45, pp. 647-658
  • Guengerich, F.P., Cytochromes P450, drugs, and diseases (2003) Mol Interv, 3, pp. 194-204
  • Honkakoski, P., Kojo, A., Raunio, H., Pasanen, M., Juvonen, R., Lang, M.A., Hepatic mitochondrial coumarin 7-hydroxylase comparison with the microsomal enzyme (1988) Arch Biochem Biophys, 267, pp. 558-567
  • Johannesen, K.A., Depierre, J.W., Measurement of cytochrome P-450 in the presence of large amounts of contaminating hemoglobin and methemoglobin (1978) Anal Biochem, 86, pp. 725-732
  • Lieber, E.S., Cytochrome P-4502E1; Its physiological and pathological role (1997) Physiol Rev, 77, pp. 517-544
  • Lin, J.H., Lu, A., Inhibition and Induction of Cytochrome P450 and the clinical implications (1998) Clin Pharmacokinet, 35, pp. 361-390
  • Loeper, J., Descatoire, V., Maurice, M., Beaune, P., Feldmann, G., Larrey, D., Pessayre, D., Presence of functional cytochrome P-450 on isolated rat hepatocyte plasma membrane (1990) J Hepatology, 11, pp. 850-858
  • Lowry, O., Rosebrough, N., Farr, A., Randall, R., Protein measurement with the Folin-phenol reagent (1951) J Biol Chem, 193, pp. 265-275
  • Masters, B.S.S., Williams Jr., C.H., Kamin, H., The preparation and properties of microsomal TPNH-Cytochrome c Reductase from pig liver (1967) Methods in Enzymology, 10, pp. 565-573. , Estabrook RW, Pullman ME (eds), Elsevier Inc
  • Miksys, S.L., Rao, Y., Sellers, E.M., Kwan, M., Mendis, D., Tyndale, R.F., Regional and cellular distribution of CYP2D family members in rat brain (2000) Xenobiotica, 30, pp. 547-564
  • Miksys, S.L., Tyndale, R.E., Drug-metabolizing cytochrome P450s in the brain (2002) Rev Psychiatr Neurosci, 27, pp. 406-415
  • Montoliu, C., Valles, S., Renau-Piqueras, J., Guerri, C., Ethanol-induced oxygen radical formation and lipid peroxidation in rat brain: Effect of chronic alcohol consumption (1994) J Neurochem, 63, pp. 1855-1862
  • Nabeshima, T., Fontenot, J., Ho, I.K., Effects of chronic administration of pentobarbital or morphine on the brain microsomal cytochrome P-450 system (1981) Biochem Pharmacol, 30, pp. 1142-1145
  • Neve, E.P., Eliasson, E., Pronzato, M.A., Albano, E., Marinari, U., Ingelman-Sundberg, M., Enzyme specific transport of rat liver cytochrome P450 in the golgi apparatus (1996) Arch Biochem Biophys, 333, pp. 459-465
  • Omura, T., Sato, R., The carbon monoxide-binding pigment of liver microsomes (1964) J Biol Chem, 239, pp. 2370-2378
  • Phillips, A.H., Langdon, R.G., Hepatic triphosphopyridine nucleotide-cytochrome c reductase: Isolation, characterization, and kinetic studies (1962) J Biol Chem, 237, pp. 2652-2660
  • Ravindranath, V., Anandatheerthavarada, H.K., Shankar, S.K., Xenobiotic metabolism in human brain-presence of cytochrome P-450 and associated mono-oxygenases (1989) Brain Res, 496, pp. 331-335
  • Ravindranath, V., Bhamre, S., Bhagwat, S.V., Anandatheerthavarada, H.K., Shankar, S.K., Tirumalai, P.S., Xenobiotic metabolism in brain (1995) Toxicol Lett, 82-83, pp. 633-638
  • Rodriguez, J.A., Buzaleh, A.M., Fossati, M., Azcurra, J., Batlle, A.M., The effects of some porphyrinogenic drugs on the brain cholinergic system (2002) Cell Mol Biol, 48, pp. 103-110
  • Rodriguez, J.A., Martinez Mdel, C., Gerez, E., Batlle, A., Buzaleh, A.M., Heme oxygenase, aminolevulinate acid synthetase and the antioxidant system in the brain of mice treated with porphyrinogenic drugs (2005) Cell Mol Biol, 51, pp. 1-8
  • Rosenbrock, H., Hagemeyer, C.E., Singec, I., Knoth, R., Volk, B., Testosterone metabolism in rat brain is differentially enhanced by phenytoin-inducible cytochrome P450 isoforms (1999) J Neuroendocrinol, 11, pp. 597-604
  • Thunell, S., Porphyrins, porphyrin metabolism and porphyrias. I. Update (2000) Scand J Clin Lab Invest, 60, pp. 509-540
  • Walther, B., Ghersi-Egea, J.F., Minn, A., Siest, G., Subcellular distribution of Cytochrome P-450 in the brain (1986) Brain Res, 375, pp. 338-344

Citas:

---------- APA ----------
Lavandera, J.V., Batlle, A.M.D.C. & Buzaleh, A.M. (2007) . Metabolization of porphyrinogenic agents in brain: Involvement of the Phase I drug metabolizing system. A comparative study in liver and kidney. Cellular and Molecular Neurobiology, 27(6), 717-729.
http://dx.doi.org/10.1007/s10571-007-9154-0
---------- CHICAGO ----------
Lavandera, J.V., Batlle, A.M.D.C., Buzaleh, A.M. "Metabolization of porphyrinogenic agents in brain: Involvement of the Phase I drug metabolizing system. A comparative study in liver and kidney" . Cellular and Molecular Neurobiology 27, no. 6 (2007) : 717-729.
http://dx.doi.org/10.1007/s10571-007-9154-0
---------- MLA ----------
Lavandera, J.V., Batlle, A.M.D.C., Buzaleh, A.M. "Metabolization of porphyrinogenic agents in brain: Involvement of the Phase I drug metabolizing system. A comparative study in liver and kidney" . Cellular and Molecular Neurobiology, vol. 27, no. 6, 2007, pp. 717-729.
http://dx.doi.org/10.1007/s10571-007-9154-0
---------- VANCOUVER ----------
Lavandera, J.V., Batlle, A.M.D.C., Buzaleh, A.M. Metabolization of porphyrinogenic agents in brain: Involvement of the Phase I drug metabolizing system. A comparative study in liver and kidney. Cell. Mol. Neurobiol. 2007;27(6):717-729.
http://dx.doi.org/10.1007/s10571-007-9154-0