Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A two-dimensional model of the non-equilibrium unipolar discharge occurring in the plasma–sheath boundary region of a transferred-arc was developed. This model was used to study the current transfer to the nozzle (1 mm diameter) of a 30 A arc cutting torch operated with oxygen. The energy balance and chemistry processes in the discharge were described by using a kinetic block of 45 elementary reactions and processes with the participation of 13 species including electronically excited particles. The nonlocal transport of electrons was accounted for into the fluid model. The dependence of the ion mobility with the electric field was also considered. Basic discharge properties were described. It has been found that a large part (~ 80%) of the total electric power (1700 mW) delivered in the bulk of the sheath region is spent in heating the positive ions and further dissipated through collisions with the neutral particles. The results also showed that the electron energy loss in inelastic collisions represents only ~ 25% of the electron power and that about 63% of the power spent on gas heating is produced by the ion–molecule reaction, the electron–ion and ion–ion recombination reactions, and by the electron attachment. The rest of the power converted into heat is contributed by dissociation by electron-impact, dissociative ionization and quenching of O(1D). Some fast gas heating channels which are expected to play a key role in the double-arcing phenomena in oxygen gas were also identified. © 2017, Springer Science+Business Media, LLC.

Registro:

Documento: Artículo
Título:Modelling of the Plasma–Sheath Boundary Region in Wall-Stabilized Arc Plasmas: Unipolar Discharge Properties
Autor:Mancinelli, B.; Prevosto, L.; Chamorro, J.C.; Minotti, F.O.; Kelly, H.
Filiación:Grupo de Descargas Eléctricas, Departamento Ing. Electromecánica, Facultad Regional Venado Tuerto, UTN, Laprida 651, Venado Tuerto, Santa Fe, Argentina
Grupo de Descargas Eléctricas, Departamento Ing. Electromecánica, Facultad Regional Venado Tuerto, Universidad Tecnológica Nacional, CONICET, Laprida 651, Venado Tuerto, Santa Fe, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
CONICET- Universidad de Buenos Aires, Instituto de Física del Plasma (INFIP), Buenos Aires, Argentina
Palabras clave:Plasma–sheath; Unipolar discharge; Wall-stabilized arc; Collisional plasmas; Dissociation; Electric fields; Electron energy levels; Electrons; Energy dissipation; Gas heating; Hard facing; Impact ionization; Ionization of gases; Ions; Oxygen cutting; Photodissociation; Positive ions; Discharge properties; Dissociative ionization; Electron attachment; Electron energy loss; Elementary reaction; Inelastic collision; Two dimensional model; Wall-stabilized arc; Electric discharges
Año:2018
Volumen:38
Número:1
Página de inicio:147
Página de fin:176
DOI: http://dx.doi.org/10.1007/s11090-017-9859-x
Título revista:Plasma Chemistry and Plasma Processing
Título revista abreviado:Plasma Chem. Plasma Process.
ISSN:02724324
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02724324_v38_n1_p147_Mancinelli

Referencias:

  • Riemann, K.U., (1991) J Phys D Appl Phys, 24, pp. 493-518
  • Riemann, K.U., (2003) J Phys D Appl Phys, 36, pp. 2811-2820. , COI: 1:CAS:528:DC%2BD3sXpsV2ltbk%3D
  • Franklin, R.N., (2003) J Phys D Appl Phys, 36, pp. R309-R320. , COI: 1:CAS:528:DC%2BD3sXpsV2ltb4%3D
  • Franklin, R.N., (2003) J Phys D Appl Phys, 36, pp. 2821-2824. , COI: 1:CAS:528:DC%2BD3sXpsV2ltbY%3D
  • Franklin, R.N., (2004) J Phys D Appl Phys, 37, pp. 1342-1345. , COI: 1:CAS:528:DC%2BD2cXktFemtLw%3D
  • Benilov, M.S., (2009) Plasma Sources Sci Technol, 18, p. 014005
  • Brinkmann, R.P., (2011) J Phys D Appl Phys, 44, p. 042002
  • Hill, R.J., Jones, G.R., (1979) J Phys D Appl Phys, 12, pp. 1707-1720
  • George, D.W., Richards, P.H., (1968) Brit J Appl Phys, 1, pp. 1171-1182
  • Nemchinsky, V.A., Severance, W.S., (2006) J Phys D Appl Phys, 39, pp. R423-R438. , COI: 1:CAS:528:DC%2BD28XhtlSjtLnL
  • Boulos, M., Fauchais, P., Pfender, E., (1994) Thermal plasmas, fundamentals and applications, 1. , Plenum Press, New York
  • Prevosto, L., Kelly, H., Mancinelli, B., (2009) J Appl Phys, 105, p. 013309
  • Prevosto, L., Kelly, H., Mancinelli, B., (2011) J Appl Phys, 110, p. 083302
  • Gielen, H.J.G., Schram, D.C., (1990) IEEE Trans Plasma Sci, 18, pp. 127-133
  • Insepov, Z., Norem, J., (2013) J Vac Sci Technol, A, 31, p. 011302
  • Nemchinsky, V.A., (2009) J Phys D Appl Phys, 42, p. 205209
  • Mancinelli, B., Minotti, F.O., Prevosto, L., Kelly, H., (2014) J Appl Phys, 116, p. 023301
  • Prevosto, L., Kelly, H., Mancinelli, B., (2009) J Appl Phys, 105, p. 123303
  • Prevosto, L., Mancinelli, B., Kelly, H., (2008) Phys Scr, T131, p. 014026
  • Boeuf, J.P., Pitchford, L.C., (1995) Phys Rev E, 51, pp. 1376-1390. , COI: 1:CAS:528:DyaK2MXjslWrtbo%3D
  • Sheridan, T.E., Goree, J., (1991) Phys Fluids B, 10, pp. 2796-2804
  • Raizer, Y.P., (1991) Gas discharge physics, , Springer, Berlin
  • Rafatov, I., Bogdanov, E.A., Kudryavtsev, A.A., (2012) Phys Plasmas, 19, p. 033502
  • Chen, G., Raja, L.L., (2004) J Appl Phys, 96, pp. 6073-6081. , COI: 1:CAS:528:DC%2BD2cXhtValur%2FO
  • Hagelaar, G.J.M., Pitchford, L.C., (2005) Plasma Sources Sci Technol, 14, pp. 722-733. , COI: 1:CAS:528:DC%2BD2MXhtlGiu73M
  • Aleksandrov, N.L., Kindysheva, S.V., Nudnova, M.M., Starikovskiy, A.Y., (2010) J Phys D Appl Phys, 43, p. 255201
  • Popov, N.A., (2001) Plasma Phys Rep, 27, pp. 886-896
  • Popov, N.A., (2011) J Phys D Appl Phys, 44, p. 285201
  • Mintoussov, E.I., Pendleton, S.J., Gerbault, F.G., Popov, N.A., Starikovskaia, S.M., (2011) J Phys D Appl Phys, 44, p. 285202
  • Pintassilgo, C.D., Guerra, V., (2015) Plasma Sources Sci Technol, 24, p. 055009
  • Krishnakumar, E., Srivastava, S.K., (1992) Int J Mass Spectrom Ion Proc, 113, pp. 1-12. , COI: 1:CAS:528:DyaK38XhsF2htLw%3D
  • Kossyi, I.A., Kostinsky, A.Y., Matveyev, A.A., Silakov, V.P., (1992) Plasma Sources Sci Technol, 1, pp. 207-220. , COI: 1:CAS:528:DyaK3sXntFGjsA%3D%3D
  • Slanger, T.G., Black, G., (1978) J Chem Phys, 68, pp. 998-1000. , COI: 1:CAS:528:DyaE1cXht1ymt7s%3D
  • Capitelli, M., Ferreira, C.M., Gordiets, B.F., Osipov, A.I., (2000) Plasma kinetics in atmospheric gases, , Springer, New York
  • Florescu-Mitchell, A.I., Mitchell, J.B.A., (2006) Phys Rep, 430, pp. 277-374. , COI: 1:CAS:528:DC%2BD28Xmslams74%3D
  • Aleksandrov, N.L., Anokhin, E.M., Kindysheva, S.V., Kirpichnikov, A.A., Kosarev, I.N., Nudnova, M.M., Starikovskaia, S.M., Starikovskii, A.Y., (2012) J Phys D Appl Phys, 45, p. 255202
  • Dulaney, J.L., Biondi, M.A., Johnsen, R., (1998) Phys Rev A, 37, pp. 2539-2542
  • Johnston, H.S., (1968) Technical Report NSRDS-NBS-20, , National Bureau of Standards
  • Gomez, S., Steen, P.G., Grahama, W.G., (2002) Appl Phys Lett, 81, pp. 19-21. , COI: 1:CAS:528:DC%2BD38XkvFOlur8%3D
  • Yolles, R.S., Wise, H., (1968) J Chem Phys, 48, pp. 5109-5113. , COI: 1:CAS:528:DyaF1cXksFCnurw%3D
  • Weissman, S., Mason, E.A., (1962) J Chem Phys, 37, pp. 1289-1300. , COI: 1:CAS:528:DyaF38Xks1Khtb0%3D
  • Turner, M.M., (2015) Plasma Sources Sci Technol, 24, p. 035027
  • Viehland, L.A., Mason, E.A., (1995) At Data Nucl Data Tables, 60, pp. 37-95. , COI: 1:CAS:528:DyaK2MXmvFKru7Y%3D
  • Mason, E.A., McDaniel, E.W., (1988) Transport properties of ions in gases, , Wiley, New York
  • Gudmundsson, J.T., Marakhtanov, A.M., Patel, K.K., Gopinath, V.P., Lieberman, M.A., (2000) J Phys D Appl Phys, 33, pp. 1323-1331. , COI: 1:CAS:528:DC%2BD3cXkt1amurc%3D
  • Gudmundsson, J.T., Kouznetsov, I.G., Patel, K.K., Lieberman, M.A., (2001) J Phys D Appl Phys, 34, pp. 1100-1109. , COI: 1:CAS:528:DC%2BD3MXisleht7o%3D
  • Gudmundsson, J.T., (2004) J Phys D Appl Phys, 37, pp. 2073-2081. , COI: 1:CAS:528:DC%2BD2cXmslajtr8%3D
  • Vagin, N.P., Ionin, A.A., Klimachev, K.I.V., Napartovich, A.P., Sinitsyn, D.V., Yuryshev, N.N., (2003) Plasma Phys Rep, 29, pp. 211-219. , COI: 1:CAS:528:DC%2BD3sXitlels7s%3D
  • Toneli, D.A., Pessoa, R.S., Roberto, M., Gudmundsson, J.T., (2015) J Phys D Appl Phys, 48, p. 325202
  • Hannesdottir, H., Gudmundsson, J.T., (2016) Plasma Sources Sci Technol, 25, p. 055002
  • Phelps, A.B., Pitchford, L.C., (1985) Phys Rev A, 31, pp. 2932-2949. , COI: 1:CAS:528:DyaL2MXktFWlur0%3D
  • Rapp, D., Briglia, D., (1965) J Chem Phys, 43, pp. 1480-1489. , COI: 1:CAS:528:DyaF2MXksV2rsbc%3D
  • Eliasson, B., Kogelschatz, U., (1986) Rep. No. CH-5405, , Brown BoveriForschungszentrum, Baden
  • Lieberman, M.A., Lichtenberg, A.J., (1994) Principles of plasma discharges and materials processing, , Willey, New York
  • Almeida, P.G.C., Benilov, M.S., Naidis, G.V., (2002) J Phys D Appl Phys, 35, pp. 1577-1584. , COI: 1:CAS:528:DC%2BD38XlsFOiurg%3D
  • Ellis, H.W., Pai, R.Y., McDaniel, E.W., Mason, E.A., Viehland, L.A., (1976) At Data Nucl Data Tables, 17, pp. 177-210. , COI: 1:CAS:528:DyaE28XkvF2hurk%3D
  • Levin, E., Wright, M.J., (2004) J. Thermophys Heat Transf, 18, pp. 143-147. , COI: 1:CAS:528:DC%2BD2cXlvV2ktw%3D%3D
  • Lindsay, B.G., Sieglaff, S.K.A., Stebbings, R.F., (2001) J Geophys Res, 106, pp. 8197-8203. , COI: 1:CAS:528:DC%2BD3MXjvVKrtrk%3D
  • Lee, C., Graves, D.B., Lieberman, M.A., Hess, D.W., (1994) J Electrochem Soc, 41, pp. 1546-1555
  • Ardelyan, N.V., Bychkov, V.L., Kochetov, I.G., Kosmachevskii, K.V., (2011) IEEE Trans Plasma Sci, 39, pp. 3326-3330. , COI: 1:CAS:528:DC%2BC38XhslOmtbc%3D
  • Robson, R.E., (1986) J Chem Phys, 85, pp. 4486-4501. , COI: 1:CAS:528:DyaL28XlvFOntL4%3D
  • Rapp, D., Englander-Golden, P., Briglia, D.D., (1965) J Chem Phys, 42, pp. 4081-4085. , COI: 1:CAS:528:DyaF2MXktVKrs7k%3D
  • Capitelli, M., Bardsley, J.N., (1989) Non–equilibrium processes in partially ionized gases, , Plenum Press, New York
  • Popov, N.A., (2016) Plasma Sources Sci Technol, 25, p. 044003
  • Flitti, A., Pancheshnyi, S., (2009) Eur Phys J Appl Phys, 45, p. 21001
  • Piper, L.G., (1988) J Chem Phys, 88, pp. 231-239. , COI: 1:CAS:528:DyaL1cXosVCnsg%3D%3D
  • Piper, L.G., (1988) J Chem Phys, 88, pp. 6911-6921. , COI: 1:CAS:528:DyaL1cXkvF2jt7s%3D
  • Komuro, A., Ono, R., (2014) J Phys D Appl Phys, 47, p. 155202. , (13 pp)
  • Ferguson, E.E., (1986) J Phys Chem, 90, pp. 731-738. , COI: 1:CAS:528:DyaL28XpvFamsw%3D%3D
  • Ervin, K.M., Anusiewicz, I., Skurski, P., Simons, J., Lineberger, W.C., (2003) J Phys Chem A, 107, pp. 8521-8529. , COI: 1:CAS:528:DC%2BD3sXnt1Kks7s%3D
  • Hagelaar, G.J.M., de Hoog, F.J., Kroesen, G.M.W., (2000) Phys Rev E, 62, pp. 1452-1454. , COI: 1:CAS:528:DC%2BD3cXkvVensrs%3D
  • Go, D.B., Pohlman, D.A., (2010) J Appl Phys, 107, p. 103303
  • Leveroni, E., Pfender, E., (1989) Rev Sci Instrum, 60, pp. 3744-3749
  • Pancheshnyi, S.V., Starikovskii, A.Y., (2003) J Phys D Appl Phys, 36, pp. 2683-2691. , COI: 1:CAS:528:DC%2BD3sXovVyhu7o%3D
  • Scharfetter, D.L., Gummel, H.K., (1969) IEEE Trans Electron Devices, 16, pp. 64-77
  • Hagelaar, G.J.M., Kroesen, G.M.W., (2000) J Comp Phys, 159, pp. 1-12
  • Stone, H.L., (1968) SIAM J Numer Anal, 5, pp. 530-558
  • Kulikovsky, A.A., (1995) J Comp Phys, 119, pp. 149-155
  • Godyak, A., Sternberg, N., (1990) Phys Rev A, 42, pp. 2299-2312. , COI: 1:CAS:528:DyaK3cXlvVart70%3D
  • Sakiyama, Y., Graves, D.B., (2007) J Appl Phys, 101, p. 073306

Citas:

---------- APA ----------
Mancinelli, B., Prevosto, L., Chamorro, J.C., Minotti, F.O. & Kelly, H. (2018) . Modelling of the Plasma–Sheath Boundary Region in Wall-Stabilized Arc Plasmas: Unipolar Discharge Properties. Plasma Chemistry and Plasma Processing, 38(1), 147-176.
http://dx.doi.org/10.1007/s11090-017-9859-x
---------- CHICAGO ----------
Mancinelli, B., Prevosto, L., Chamorro, J.C., Minotti, F.O., Kelly, H. "Modelling of the Plasma–Sheath Boundary Region in Wall-Stabilized Arc Plasmas: Unipolar Discharge Properties" . Plasma Chemistry and Plasma Processing 38, no. 1 (2018) : 147-176.
http://dx.doi.org/10.1007/s11090-017-9859-x
---------- MLA ----------
Mancinelli, B., Prevosto, L., Chamorro, J.C., Minotti, F.O., Kelly, H. "Modelling of the Plasma–Sheath Boundary Region in Wall-Stabilized Arc Plasmas: Unipolar Discharge Properties" . Plasma Chemistry and Plasma Processing, vol. 38, no. 1, 2018, pp. 147-176.
http://dx.doi.org/10.1007/s11090-017-9859-x
---------- VANCOUVER ----------
Mancinelli, B., Prevosto, L., Chamorro, J.C., Minotti, F.O., Kelly, H. Modelling of the Plasma–Sheath Boundary Region in Wall-Stabilized Arc Plasmas: Unipolar Discharge Properties. Plasma Chem. Plasma Process. 2018;38(1):147-176.
http://dx.doi.org/10.1007/s11090-017-9859-x