Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A model of an atmospheric pressure nitrogen glow discharge in high-gas temperature regimes is developed. The model considers a fairly complete set of chemical reactions, including several processes with the participation of electronically exited nitrogen atoms describing the energy balance and charged particles kinetic processes in the discharge. It is shown that the thermal dissociation of vibrationally excited molecules plays an essential role in the production of N(4S) atoms. The dominant ion within the investigated current range (52–187 mA) is the molecular N2 + with an increasing proportion of atomic N+ towards high-current values. The process of production of electrons within the almost whole current range is controlled predominantly by associative ionization in atomic collisions N(2P) + N(2P) → N2 + + e; being the N(2P) atoms mainly produced via quenching of N2(A3∑u +) electronically excited molecules by N(4S) atoms. The results of calculations are compared with the available experimental data and a good agreement is found. © 2016, Springer Science+Business Media New York.

Registro:

Documento: Artículo
Título:Modelling of an Atmospheric Pressure Nitrogen Glow Discharge Operating in High-Gas Temperature Regimes
Autor:Prevosto, L.; Kelly, H.; Mancinelli, B.
Filiación:Grupo de Descargas Eléctricas, Departamento Ing. Electromecánica, Facultad Regional Venado Tuerto (UTN), Laprida 651, Venado Tuerto, Santa Fe 2600, Argentina
Instituto de Física del Plasma (CONICET), Facultad de Ciencias Exactas y Naturales (UBA) Ciudad Universitaria Pab. I, Buenos Aires, 1428, Argentina
Palabras clave:Atmospheric pressure; Electronic metastable atoms; Glow discharge; Nitrogen gas; Atmospheric chemistry; Atmospheric pressure; Atoms; Charged particles; Dissociation; Glow discharges; Ionization of gases; Molecules; Associative ionization; Atomic collision; Excited molecules; Metastable atoms; Nitrogen gas; Nitrogen glow discharge; Thermal dissociation; Vibrationally excited; Nitrogen
Año:2016
Volumen:36
Número:4
Página de inicio:973
Página de fin:992
DOI: http://dx.doi.org/10.1007/s11090-016-9716-3
Título revista:Plasma Chemistry and Plasma Processing
Título revista abreviado:Plasma Chem. Plasma Process.
ISSN:02724324
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02724324_v36_n4_p973_Prevosto

Referencias:

  • Park, G.Y., Park, S.J., Choi, M.Y., Koo, I.G., Byun, J.H., Hong, J.W., Sim, J.Y., Lee, J.K., (2012) Plasma Sources Sci Technol, 21, p. 21
  • Fridman, A., Chirokov, A., (2005) J Phys D Appl Phys, 38, pp. R1-R24. , COI: 1:CAS:528:DC%2BD2MXht1CgtbY%3D
  • Kunhardt, E.E., (2000) IEEE Trans Plasma Sci, 28, pp. 189-200
  • Gambling, W.A., Edels, H., (1954) Br J Appl Phys, 5, pp. 36-39
  • Machala, Z., Marode, E., Laux, C.O., Kruger, C.H., (2004) J Adv Oxid Technol, 7, pp. 133-137
  • Staack, D., Farouk, B., Gutsol, A., Fridman, A., (2008) Plasma Sources Sci Technol, 17, p. 13
  • Verreycken, T., Schram, D.C., Leys, C., Bruggeman, P., (2010) Plasma Sources Sci Technol, 19, p. 9
  • Machala, Z., Laux, C.O., Kruger, C.H., (2005) IEEE Trans Plasma Sci, 33, pp. 320-321. , COI: 1:CAS:528:DC%2BD2MXktFCrt7w%3D
  • Staack, D., Farouk, B., Gutsol, A., Fridman, A., (2005) Plasma Sources Sci Technol, 14, pp. 700-711. , COI: 1:CAS:528:DC%2BD2MXhtlGiu7zL
  • Wilson, A., Staack, D., Farouk, T., Gutsol, A., Fridman, A., Farouk, B., (2008) Plasma Sources Sci Technol, 17, p. 12
  • Prevosto, L., Kelly, H., Mancinelli, B., Chamorro, J.C., Cejas, E., (2015) Phys Plasmas, 22, p. 8
  • Staack, D., Farouk, B., Gutsol, A., Fridman, A., (2009) J Appl Phys, 106, p. 7
  • Bayle, P., Bayle, M., Forn, G., (1985) J Phys D Appl Phys, 18, pp. 2395-2415. , COI: 1:CAS:528:DyaL28XhtVSmsrw%3D
  • Hsu, C.C., Wu, C.Y., (2009) J Phys D Appl Phys, 42, p. 8
  • Akishev, Y., Goossens, O., Callebaut, T., Leys, C., Napartovich, A., Trushkin, N., (2001) J Phys D Appl Phys, 34, pp. 2875-2882. , COI: 1:CAS:528:DC%2BD3MXnt1yktLg%3D
  • Raizer, Y.P., (1991) Gas discharge physics, , Springer, Berlin
  • Boeuf, J.P., Kunhardt, E.E., (1986) J Appl Phys, 60, pp. 915-923. , COI: 1:CAS:528:DyaL28XltVKktbg%3D
  • Capitelli, M., Ferreira, C.M., Gordiets, B.F., Osipov, A.I., (2000) Plasma kinetics in atmospheric gases, , Springer, New York
  • Velikhov, E.P., Golubev, V.S., Pashkin, S.V., (1982) Sov Phys Usp, 25, pp. 340-358
  • Eletskii, A.V., Smirnov, B.M., (1996) Phys Usp, 39, pp. 1137-1156
  • Akishev, Y., Grushin, M., Karalnik, V., Petryakov, A., Trushkin, N., (2010) J Phys D Appl Phys, 43, p. 11
  • Kruger, C.H., Laux, C.O., Yu, L., Packan, D.M., Pierrot, L., (2002) Pure Appl Chem, 74, pp. 337-347. , COI: 1:CAS:528:DC%2BD38XjtlCrs7w%3D
  • Yu, L., Laux, C.O., Packan, D.M., Kruger, C.H., (2002) J Appl Phys, 91, pp. 2678-2686. , COI: 1:CAS:528:DC%2BD38Xhs1ahs74%3D
  • Yalin, A.P., Laux, C.O., Kruger, C.H., Zare, R.N., (2003) Plasma Sources Sci Technol, 11, pp. 248-253
  • Akishev, Y., Grushin, M., Karalnik, V., Petryakov, A., Trushkin, N., (2010) J Phys D Appl Phys, 43, p. 18
  • Pierrot, L., Yu, L., Gessman, R.J., Laux, C.O., Kruger, C.H., In: Proceedings of 30th AIAA plasmadynamics and lasers conference (1999) AIAA 99-3478, , Norfolk: VA
  • Hugill, J., Saktioto, T., (2001) Plasma Sources Sci Technol, 10, pp. 38-42. , COI: 1:CAS:528:DC%2BD3MXisVGrtL4%3D
  • Saporoschenko, M., (1965) Phys Rev, 139, pp. 352-356. , COI: 1:CAS:528:DyaF2MXkt1Oru78%3D
  • Mehr, F.J., Biondi, M.A., (1969) Phys Rev, 181, pp. 264-271. , COI: 1:CAS:528:DyaF1MXhtV2ht7c%3D
  • Lin, C.L., Kaufman, F., (1971) J Chem Phys, 55, pp. 3760-3770. , COI: 1:CAS:528:DyaE3MXlsVChur0%3D
  • Naidis, G.V., (2007) Plasma Sources Sci Technol, 16, pp. 297-303
  • Kossyi, I.A., Kostinsky, A.Y., Matveyev, A.A., Silakov, V.P., (1992) Plasma Sources Sci Technol, 1, pp. 207-220. , COI: 1:CAS:528:DyaK3sXntFGjsA%3D%3D
  • Brunet, H., RocaSerra, J., (1985) J Appl Phys, 57, pp. 1574-1581. , COI: 1:CAS:528:DyaL2MXhsFyqsbw%3D
  • Guerra, V., Sa, P.A., Loureiro, J., (2004) Eur Phys J Appl Phys, 28, pp. 125-152. , COI: 1:CAS:528:DC%2BD2MXjvFOrug%3D%3D
  • (2005) Plasma Sources Sci. Technol., , www.bolsig.laplace.univ-tlse.fr, Hagelaar GJM, Pitchford LC 14:722–733; freeware code BOLSIG+ version 07/2015. (2015)
  • http://www.lxcat.laplace.univ-tlse.fr, SIGLO database,. Retrieved June 4, 2013; Macheret, S.O., Rich, J.W., (1993) Chem Phys, 174, pp. 25-43. , COI: 1:CAS:528:DyaK3sXltVCiurc%3D
  • Fridman, A.A., Kennedy, L.A., (2004) Plasma physics and engineering, , Taylor & Francis, London
  • Chernyi, G.G., Losev, S.A., Macheret, S.O., Potapkin, B.V., (2002) Physical and chemical processes in gas dynamics: cross sections and rate constants, , 1, AIAA, New York
  • da Silva, M.L., Guerra, V., Loureiro, J., (2007) Chem Phys, 342, pp. 275-287
  • Andre, P., Abbaoui, M., Lefort, A., Parizet, M.J., (1996) Plasma Chem Plasma Process, 16, pp. 379-397. , COI: 1:CAS:528:DyaK28XmtVCitr8%3D
  • Huber, K.P., Herzberg, G., (1979) Molecular spectra and molecular structure: IV constants of diatomic molecules, , Springer, Berlin
  • D’Ammando, G., Colonna, G., Pietanza, L.D., Capitelli, M., (2010) Spectrochim Acta Part B, 65, pp. 603-605
  • Bacri, J., Medani, A., (1982) Phys C, 112, pp. 101-118. , COI: 1:CAS:528:DyaL38XhtFSnsr8%3D
  • Benilov, M.S., Naidis, G.V., (2003) J Phys D Appl Phys, 36, pp. 1834-1841. , COI: 1:CAS:528:DC%2BD3sXmsFOntb4%3D
  • Boulos, M., Fauchais, P., Pfender, E., (1994) Thermal plasmas, fundamentals and applications, , 1, Plenum Press, New York and London
  • Popov, N.A., (2001) Plasma Phys Rep, 27, pp. 886-896
  • Popov, N.A., (2011) J Phys D Appl Phys, 44, p. 16
  • Mintoussov, E.I., Pendleton, S.J., Gerbault, F.G., Popov, N.A., Starikovskaia, S.M., (2011) J Phys D Appl Phys, 44, p. 13
  • Matveyev, A.A., Silakov, V.P., (1999) Plasma Sources Sci Technol, 8, pp. 162-178. , COI: 1:CAS:528:DyaK1MXit1Kks7g%3D
  • Itikawa, Y., (2006) J Phys Chem Ref Data, 35, pp. 31-53. , COI: 1:CAS:528:DC%2BD28Xit12rt70%3D
  • Aleksandrov, N.L., Bazelyan, E.M., Kochetov, I.V., Dyatko, N.A., (1997) J Phys D Appl Phys, 30, pp. 1616-1624. , COI: 1:CAS:528:DyaK2sXjvVKnur8%3D
  • Brunet, H., Vincent, P., RocaSerra, J., (1983) J Appl Phys, 54, pp. 4951-4957. , COI: 1:CAS:528:DyaL3sXltlaiur4%3D
  • Cao, Y.S., Johnsen, R., (1991) J Chem Phys, 95, pp. 7356-7359. , COI: 1:CAS:528:DyaK3MXmvVyht7Y%3D
  • Bourdon, A., Vervisch, P., (1996) Phys Rev E, 54, pp. 1888-1898. , COI: 1:CAS:528:DyaK28XltFyqurw%3D
  • Dunn, M.G., Lordi, J.A., (1970) AIAA J., 8, pp. 339-345. , COI: 1:CAS:528:DyaE3cXhtVertbY%3D
  • Piper, L.G., (1988) J Chem Phys, 88, pp. 6911-6921. , COI: 1:CAS:528:DyaL1cXkvF2jt7s%3D
  • Hays, G.N., Oskam, H.J., (1973) J Chem Phys, 59, pp. 1507-1516. , COI: 1:CAS:528:DyaE3sXlt1Sis7o%3D
  • Piper, L.G., (1988) J Chem Phys, 88, pp. 231-232. , COI: 1:CAS:528:DyaL1cXosVCnsg%3D%3D
  • Clark, W.G., Setser, D.W., (1980) J Chem Phys, 84, pp. 2225-2233. , COI: 1:CAS:528:DyaL3cXlsFGqsLY%3D
  • Tatarova, E., Dias, F.M., Gordiets, B., Ferreyra, C.M., (2005) Plasma Sources Sci Technol, 14, pp. 19-31. , COI: 1:CAS:528:DC%2BD2MXjtVKjsrk%3D
  • Piper, L.G., (1989) J Chem Phys, 90, pp. 7087-7095. , COI: 1:CAS:528:DyaL1MXls1Slsbo%3D
  • Heidner, R.F., Sutton, D.G., Suchard, S.N., (1976) Chem Phys Lett, 37, pp. 243-248. , COI: 1:CAS:528:DyaE28XhtFektr8%3D
  • Piper, L.G., (1987) J Chem Phys, 87, pp. 1625-1629. , COI: 1:CAS:528:DyaL2sXlt1eltLk%3D
  • Gordiets, B.F., Ferreira, C.M., Guerra, V.L., Loureiro, J.M.A.H., Nahorny, J., Pagnon, D., Touzeau, M., Vialle, M., (1995) IEEE Trans Plasma Sci, 23, pp. 750-768. , COI: 1:CAS:528:DyaK2MXpsVCms7c%3D
  • Gordiets, B., Ferreira, C.M., Pinheiro, M.J., Ricard, A., (1998) Plasma Sources Sci Technol, 7, pp. 363-378. , COI: 1:CAS:528:DyaK1MXos1Whtw%3D%3D

Citas:

---------- APA ----------
Prevosto, L., Kelly, H. & Mancinelli, B. (2016) . Modelling of an Atmospheric Pressure Nitrogen Glow Discharge Operating in High-Gas Temperature Regimes. Plasma Chemistry and Plasma Processing, 36(4), 973-992.
http://dx.doi.org/10.1007/s11090-016-9716-3
---------- CHICAGO ----------
Prevosto, L., Kelly, H., Mancinelli, B. "Modelling of an Atmospheric Pressure Nitrogen Glow Discharge Operating in High-Gas Temperature Regimes" . Plasma Chemistry and Plasma Processing 36, no. 4 (2016) : 973-992.
http://dx.doi.org/10.1007/s11090-016-9716-3
---------- MLA ----------
Prevosto, L., Kelly, H., Mancinelli, B. "Modelling of an Atmospheric Pressure Nitrogen Glow Discharge Operating in High-Gas Temperature Regimes" . Plasma Chemistry and Plasma Processing, vol. 36, no. 4, 2016, pp. 973-992.
http://dx.doi.org/10.1007/s11090-016-9716-3
---------- VANCOUVER ----------
Prevosto, L., Kelly, H., Mancinelli, B. Modelling of an Atmospheric Pressure Nitrogen Glow Discharge Operating in High-Gas Temperature Regimes. Plasma Chem. Plasma Process. 2016;36(4):973-992.
http://dx.doi.org/10.1007/s11090-016-9716-3