Artículo

Scarano, F.; Sztarker, J.; Medan, V.; de Astrada, M.B.; Tomsic, D. "Binocular neuronal processing of object motion in an arthropod" (2018) Journal of Neuroscience. 38(31):6933-6948
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Animals use binocular information to guide many behaviors. In highly visual arthropods, complex binocular computations involved in processing panoramic optic flow generated during self-motion occur in the optic neuropils. However, the extent to which binocular processing of object motion occurs in these neuropils remains unknown. We investigated this in a crab, where the distance between the eyes and the extensive overlapping of their visual fields advocate for the use of binocular processing. By performing in vivo intracellular recordings from the lobula (third optic neuropil) of male crabs, we assessed responses of object-motion-sensitive neurons to ipsilateral or contralateral moving objects under binocular and monocular conditions. Most recorded neurons responded to stimuli seen independently with either eye, proving that each lobula receives profuse visual information from both eyes. The contribution of each eye to the binocular response varies among neurons, from those receiving comparable inputs from both eyes to those with mainly ipsilateral or contralateral components, some including contralateral inhibition. Electrophysiological profiles indicated that a similar number of neurons were recorded from their input or their output side. In monocular conditions, the first group showed shorter response delays to ipsilateral than to contralateral stimulation, whereas the second group showed the opposite. These results fit well with neurons conveying centripetal and centrifugal information from and toward the lobula, respectively. Intracellular and massive stainings provided anatomical support for this and for direct connections between the two lobulae, but simultaneous recordings failed to reveal such connections. Simplified model circuits of interocular connections are discussed. © 2018 the authors.

Registro:

Documento: Artículo
Título:Binocular neuronal processing of object motion in an arthropod
Autor:Scarano, F.; Sztarker, J.; Medan, V.; de Astrada, M.B.; Tomsic, D.
Filiación:Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, Argentina
Departamento de Fisiología, Biología Molecular y Celular Dr. Héctor Maldonado, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, 1428, Argentina
Palabras clave:Behavior; Binocularity; Giant neurons; In vivo intracellular recording; Insect vision; Optic neuropils; adult; article; controlled study; crab; eye; giant nerve cell; in vivo study; insect; intracellular recording; male; motion; neuropil; nonhuman; stimulus; visual field; visual information
Año:2018
Volumen:38
Número:31
Página de inicio:6933
Página de fin:6948
DOI: http://dx.doi.org/10.1523/JNEUROSCI.3641-17.2018
Título revista:Journal of Neuroscience
Título revista abreviado:J. Neurosci.
ISSN:02706474
CODEN:JNRSD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02706474_v38_n31_p6933_Scarano

Referencias:

  • Barnes, W.J.P., Nalbach, H.O., Eye movements in freely moving crabs: Their sensory basis and possible role in flow-field analysis (1993) Comp Biochem Physiol, 104, pp. 675-693
  • Bengochea, M., Berón de Astrada, M., Tomsic, D., Sztarker, J., A crustacean lobula plate: Morphology, connections, and retinotopic organization (2018) J Comp Neurol, 526
  • Berón de Astrada, M., Tomsic, D., Physiology and morphology of visual movement detector neurons in a crab (Decapoda: Brachyura) (2002) J Comp Physiol a Neuroethol Sens Neural Behav Physiol, 188, pp. 539-551
  • Berón de Astrada, M., Medan, V., Tomsic, D., How visual space maps in the optic neuropils of a crab (2011) J Comp Neurol, 519, pp. 1631-1639
  • Berón de Astrada, M., Bengochea, M., Medan, V., Tomsic, D., Regional-ization in the eye of the grapsid crab Neohelice granulata (=Chasmag-nathus granulatus): Variation of resolution and facet diameters (2012) J Comp Physiol a Neuroethol Sens Neural Behav Physiol, 198, pp. 173-180
  • Berón de Astrada, M., Bengochea, M., Sztarker, J., Delorenzi, A., Tomsic, D., Behaviorally related neural plasticity in the arthropod optic lobes (2013) Curr Biol, 23, pp. 1389-1398
  • Collet, T.S., Binocular depth vision in arthropods (1987) Trends Neurosci, 10, pp. 1-2
  • Devoe, R.D., Kaiser, W., Ohm, J., Stone, L.S., Horizontal movement detectors of honeybees: Directionally-selective visual neurons in the lobula and brain (1982) J Comp Physiol a Neuroethol Sens Neural Behav Physiol, 147, pp. 155-170
  • Duistermars, B.J., Care, R.A., Frye, M.A., Binocular interactions underlying the classic optomotor responses of flying flies (2012) Front Behav Neurosci, 6, p. 6
  • Dunbier, J.R., Wiederman, S.D., Shoemaker, P.A., O’Carroll, D.C., Facilitation of dragonfly target-detecting neurons by slow moving features on continuous paths (2012) Front Neural Circuits, 6 (79)
  • Hemmi, J.M., Zeil, J., Robust judgement of inter-object distance by an arthropod (2003) Nature, 421
  • Hennig, P., Kern, R., Egelhaaf, M., Binocular integration of visual information: A model study on naturalistic optic flow processing (2011) Front Neural Circuits, 5, p. 4. , CrossRef Medline
  • Horridge, G.A., Sandeman, D.C., Nervous control of optokinetic responses in the crab, Carcinus (1964) Proc R Soc Lond B Biol Sci, 161, pp. 216-246
  • Hubel, D.H., Wiesel, D.T.N., Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex (1962) J Physiol, 160
  • Krapp, H.G., Hengstenberg, R., Egelhaaf, M., Binocular contributions to optic flow processing in the fly visual system (2001) J Neurophysiol, 85
  • Land, M., Layne, J., The visual control of behavior in fiddler crabs: II. Tracking control systems in courtship and defense (1995) J Comp Physiol a Neuroethol Sens Neural Behav Physiol, 177, pp. 91-103
  • Livingstone, M.S., Conway, B.R., Substructure of direction-selective receptive fields in macaque V1 (2003) J Neurophysiol, 89, pp. 2743-2759
  • Luppi, T., Bas, C., Méndez Casariego, A., Albano, M., Lancia, J., Kittlein, M., Rosenthal, A., Iribarne, O., The influence of habitat, season and tidal regime in the activity of the intertidal crab Neohelice (=Chasmagnathus) granulata (2013) Helgol Mar Res, 67, pp. 1-15
  • Medan, V., Oliva, D., Tomsic, D., Characterization of lobula giant neurons responsive to visual stimuli that elicit escape behaviors in the crab Chasmagnathus (2007) J Neurophysiol, 98
  • Medan, V., Berón De Astrada, M., Scarano, F., Tomsic, D., A network of visual motion-sensitive neurons for computing object position in an arthropod (2015) J Neurosci, 35
  • Nalbach, H.O., Thier, P., Varjú, D., Binocular interaction in the optokinetic system of the crab Carcinus maenas (L.): Optokinetic gain modified by bilateral image flow (1993) Vis Neurosci, 10, pp. 873-885
  • Nityananda, V., Tarawneh, G., Rosner, R., Nicolas, J., Crichton, S., Read, J., Insect stereopsis demonstrated using a 3D insect cinema (2016) Sci Rep, 6
  • Oliva, D., Tomsic, D., Computation of object approach by a system of visual motion-sensitive neurons in the crab Neohelice (2014) J Neurophysiol, 112, pp. 1477-1490
  • Oliva, D., Tomsic, D., Object approach computation by a giant neuron and its relation with the speed of escape in the crab Neohelice (2016) J Exp Biol, 219
  • Ramdya, P., Engert, F., Emergence of binocular functional properties in a monocular neural circuit (2008) Nat Neurosci, 11, pp. 1083-1090
  • Rosner, R., Homberg, U., Widespread sensitivity to looming stimuli and small moving objects in the central complex of an insect brain (2013) J Neurosci, 33, pp. 8122-8133
  • Sal Moyano, M.P., Gavio, M.A., McLay, C.L., Luppi, T., Variation in the post-copulatory guarding behavior of Neohelice granulata (Brachyura, Grapsoidea, Varunidae) in two different habitats (2014) Mar Ecol, 36, pp. 1185-1194
  • Scarano, F., Tomsic, D., Escape response of the crab Neohelice to computer generated looming and translational visual danger stimuli (2014) J Physiol Paris, 108, pp. 141-147
  • Smolka, J., Hemmi, J.M., Topography of vision and behaviour (2009) J Exp Biol, 212, pp. 3522-3532
  • Sombke, A., Harzsch, S., Immunolocalization of histamine in the optic neuropils of Scutigera coleoptrata (Myriapoda: Chilopoda) reveals the basal organization of visual systems in mandibulata (2015) Neurosci Lett, 594, pp. 111-116
  • Strausfeld, N.J., Brain organization and the origin of insects: An assessment (2009) Proc Biol Sci, 276
  • Strausfeld, N.J., Nässel, D.R., Neuroarchitecture of brain regions that subserve the compound eyes of Crustacea and insect (1981) Handbook of Sensory Physiology: Vision in Invertebrates, VII/6B, pp. 1-32. , (Autrum, ed), Berlin; Heidelberg; New York: Springer
  • Suver, M.P., Huda, A., Iwasaki, N., Safarik, S., Dickinson, M.H., An array of descending visual interneurons encoding self-motion in Drosophila (2016) J Neurosci, 36
  • Suzuki, Y., Morimoto, T., Miyakawa, H., Aonishi, T., Cooperative integration and representation underlying bilateral network of fly motion-sensitive neurons (2014) Plos One, 9
  • Sztarker, J., Tomsic, D., Binocular visual integration in the crustacean nervous system (2004) J Comp Physiol a Neuroethol Sens Neural Behav Physiol, 190, pp. 951-962
  • Sztarker, J., Tomsic, D., Brain modularity in arthropods: Individual neurons that support “what” but not “where” memories (2011) J Neurosci, 31, pp. 8175-8180
  • Tomsic, D., Visual motion processing subserving behavior in crabs (2016) Curr Opin Neurobiol, 41, pp. 113-121
  • Tomsic, D., Berón de Astrada, M., Sztarker, J., Identification of individual neurons reflecting short-and long-term visual memory in an arthropod (2003) J Neurosci, 23, pp. 8539-8546
  • Tomsic, D., Sztarker, J., Berón de Astrada, M., Oliva, D., Lanza, E., The predator and prey behaviors of crabs: From ecology to neural adaptations (2017) J Exp Biol, 220
  • Wertz, A., Borst, A., Haag, J., Nonlinear integration of binocular optic flow by DNOVS2, a descending neuron of the fly (2008) J Neurosci, 28, pp. 3131-3140
  • Wiersma, C.A., Bush, B.M., Waterman, T.H., Efferent visual responses of contralateral origin in the optic nerve of the crab podophthalmus (1964) J Cell Comp Physiol, 64
  • Wood, H.L., Glantz, R.M., Distributed processing by visual interneurons of crayfish brain. I. response characteristics and synaptic interactions (1980) J Neurophysiol, 43
  • Wood, H.L., Glantz, R.M., Distributed processing by visual interneurons of crayfish brain: II. Network organization and stimulus modulation of synaptic efficacy (1980) J Neurophysiol, 43, pp. 741-753
  • Zeil, J., Hemmi, J.M., The visual ecology of fiddler crabs (2006) J Comp Physiol A, 192, pp. 1-25

Citas:

---------- APA ----------
Scarano, F., Sztarker, J., Medan, V., de Astrada, M.B. & Tomsic, D. (2018) . Binocular neuronal processing of object motion in an arthropod. Journal of Neuroscience, 38(31), 6933-6948.
http://dx.doi.org/10.1523/JNEUROSCI.3641-17.2018
---------- CHICAGO ----------
Scarano, F., Sztarker, J., Medan, V., de Astrada, M.B., Tomsic, D. "Binocular neuronal processing of object motion in an arthropod" . Journal of Neuroscience 38, no. 31 (2018) : 6933-6948.
http://dx.doi.org/10.1523/JNEUROSCI.3641-17.2018
---------- MLA ----------
Scarano, F., Sztarker, J., Medan, V., de Astrada, M.B., Tomsic, D. "Binocular neuronal processing of object motion in an arthropod" . Journal of Neuroscience, vol. 38, no. 31, 2018, pp. 6933-6948.
http://dx.doi.org/10.1523/JNEUROSCI.3641-17.2018
---------- VANCOUVER ----------
Scarano, F., Sztarker, J., Medan, V., de Astrada, M.B., Tomsic, D. Binocular neuronal processing of object motion in an arthropod. J. Neurosci. 2018;38(31):6933-6948.
http://dx.doi.org/10.1523/JNEUROSCI.3641-17.2018