Artículo

Wedemeyer, C.; Vattino, L.G.; Moglie, M.J.; Ballestero, J.; Maison, S.F.; Di Guilmi, M.N.; Taranda, J.; Liberman, M.C.; Fuchs, P.A.; Katz, E.; Elgoyhen, A.B. "A gain-of-function mutation in the α9 nicotinic acetylcholine receptor alters medial olivocochlear efferent short-term synaptic plasticity" (2018) Journal of Neuroscience. 38(16):3939-3954
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Gain control of the auditory system operates at multiple levels. Cholinergic medial olivocochlear (MOC) fibers originate in the brainstem and make synaptic contacts at the base of the outer hair cells (OHCs), the final targets of several feedback loops from the periphery and higher-processing centers. Efferent activation inhibitsOHCactive amplification within the mammalian cochlea, through the activation of a calcium-permeable α 9 α 10 ionotropic cholinergic nicotinic receptor (nAChR), functionally coupled to calcium activated SK2 potassium channels. Correct operation of this feedback requires careful matching of acoustic input with the strength of cochlear inhibition (Galambos, 1956; Wiederhold and Kiang, 1970; Gifford and Guinan, 1987), which is driven by the rate of MOCactivity and short-term facilitation at theMOC-OHCsynapse (Ballestero et al., 2011; Katz and Elgoyhen, 2014). The present work shows (in mice of either sex) that a mutation in the α 9α 10 nAChR with increased duration of channel gating (Taranda et al., 2009) greatly elongates hair cell-evoked IPSCs and Ca2+signals. Interestingly, MOC–OHC synapses of L9’T mice presented reduced quantum content and increased presynaptic facilitation. These phenotypic changes lead to enhanced and sustained synaptic responses and OHC hyperpolarization upon high-frequency stimulation of MOC terminals. At the cochlear physiology level these changes were matched by a longer time course of efferent MOC suppression. This indicates that the properties of theMOC-OHCsynapse directly determine the efficacy of the MOCfeedback to the cochlea being a main player in the “gain control” of the auditory periphery. © 2018 the authors.

Registro:

Documento: Artículo
Título:A gain-of-function mutation in the α9 nicotinic acetylcholine receptor alters medial olivocochlear efferent short-term synaptic plasticity
Autor:Wedemeyer, C.; Vattino, L.G.; Moglie, M.J.; Ballestero, J.; Maison, S.F.; Di Guilmi, M.N.; Taranda, J.; Liberman, M.C.; Fuchs, P.A.; Katz, E.; Elgoyhen, A.B.
Filiación:Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, 1428, Argentina
Department of Otolaryngology, Harvard Medical School, Eaton-Peabody Laboratories Massachusetts Eye and Ear Infirmary, Boston, MA 02114, United States
Department of Otolaryngology-Head and Neck Surgery, The Center for Hearing and Balance and the Center for Sensory Biology, Institute for Basic Biomedical Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, 1121, Argentina
Palabras clave:Cochlea; Efferent inhibition; Hair cells; Synaptic plasticity; α9α10 nAChR; alpha9 nicotinic acetylcholine receptor; nicotinic receptor; unclassified drug; animal cell; animal tissue; Article; calcium signaling; cochlea; controlled study; efferent nerve; enzyme activation; facilitation; feedback system; female; gain of function mutation; hyperpolarization; induced pluripotent stem cell; male; medial olivocochlear efferent; mouse; nerve cell plasticity; nonhuman; outer hair cell; phenotype; priority journal; short term synaptic plasticity
Año:2018
Volumen:38
Número:16
Página de inicio:3939
Página de fin:3954
DOI: http://dx.doi.org/10.1523/JNEUROSCI.2528-17.2018
Título revista:Journal of Neuroscience
Título revista abreviado:J. Neurosci.
ISSN:02706474
CODEN:JNRSD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02706474_v38_n16_p3939_Wedemeyer

Referencias:

  • Art, J.J., Fettiplace, R., Efferent desensitization of auditory nerve fibre responses in the cochlea of the turtle Pseudemys scripta elegans (1984) J Physiol, 356, pp. 507-523
  • Art, J.J., Fettiplace, R., Fuchs, P.A., Synaptic hyperpolarization and inhibition of turtle cochlear hair cells (1984) J Physiol, 365, pp. 525-550
  • Ashmore, J.F., A fast motile response in guinea pig outer hair cells: The cellular basis of the cochlear amplifier (1987) J Physiol, 388, pp. 323-347
  • Atluri, P.P., Regehr, W.G., Determinants of the time course of facilitation at the granule cell to purkinje cell synapse (1996) J Neurosci, 16, pp. 5661-5671
  • Ballestero, J., Zorrilla De San Martín, J., Goutman, J., Elgoyhen, A.B., Fuchs, P., Katz, E., Short-term synaptic plasticity regulates the level of olivocochlear inhibition to auditory hair cells (2011) J Neurosci, 31, pp. 14763-14774
  • Blanchet, C., Eróstegui, C., Sugasawa, M., Dulon, D., Acetylcholineinduced potassium current of guinea pig outer hair cells: Its dependence on a calcium influx through nicotinic-like receptors (1996) J Neurosci, 16, pp. 2574-2584
  • Brandt, A., Striessnig, J., Moser, T., CaV1.3 channels are essential for development and presynaptic activity of cochlear inner hair cells (2003) J Neurosci, 23, pp. 10832-10840
  • Brown, M.C., Morphology and response properties of single olivocochlear fibers in the guinea pig (1989) Hear Res, 40, pp. 93-109
  • Brown, M.C., Nuttall, A.L., Efferent control of cochlear inner hair cell responses in guinea-pig (1984) J Physiol, 354, pp. 625-646
  • Brownell, W.E., Bader, C.R., Bertrand, D., De Ribaupierre, Y., Evoked mechanical responses of isolated cochlear hair cells (1985) Science, 227, pp. 194-196
  • Clause, A., Kim, G., Sonntag, M., Weisz, C.J., Vetter, D.E., Rűbsamen, R., Kandler, K., The precise temporal pattern of prehearing spontaneous activity is necessary for tonotopic map refinement (2014) Neuron, 82, pp. 822-835
  • Clause, A., Lauer, A.M., Kandler, K., Mice lacking the alpha9 subunit of the nicotinic acetylcholine receptor exhibit deficits in frequency difference limens and sound localization (2017) Front Cell Neurosci, 11, p. 167
  • Dallos, P., The active cochlea (1992) J Neurosci, 12, pp. 4575-4585
  • Dallos, P., Cochlear amplification, outer hair cells and prestin (2008) Curr Opin Neurobiol, 18, pp. 370-376
  • Dallos, P., He, D.Z., Lin, X., Sziklai, I., Mehta, S., Evans, B.N., Acetylcholine, outer hair cell electromotility, and the cochlear amplifier (1997) J Neurosci, 17, pp. 2212-2226
  • Del Castillo, J., Katz, B., Statistical factors involved in neuromuscular facilitation and depression (1954) J Physiol, 124, pp. 574-585
  • Dulon, D., Luo, L., Zhang, C., Ryan, A.F., Expression of small-conductance calcium-activated potassium channels (SK) in outer hair cells of the rat cochlea (1998) Eur J Neurosci, 10, pp. 907-915
  • Elgoyhen, A.B., Johnson, D.S., Boulter, J., Vetter, D.E., Heinemann S (1994) α9: An acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells Cell, 79, pp. 705-715
  • Elgoyhen, A.B., Vetter, D.E., Katz, E., Rothlin, C.V., Heinemann, S.F., Boulter, J., α10: A determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells (2001) Proc Natl Acad Sci U S A, 98, pp. 3501-3506
  • Elgoyhen, A.B., Katz, E., Fuchs, P.A., The nicotinic receptor of cochlear hair cells: A possible pharmacotherapeutic target? (2009) Biochem Pharmacol, 78, pp. 712-719
  • Erazo-Fischer, E., Striessnig, J., Taschenberger, H., The role of physiological afferent nerve activity during in vivo maturation of the calyx of held synapse (2007) J Neurosci, 27, pp. 1725-1737
  • Fioravante, D., Regehr, W.G., Short-term forms of presynaptic plasticity (2011) Curr Opin Neurobiol, 21, pp. 269-274
  • Fuchs, P.A., Murrow, B.W., A novel cholinergic receptor mediates inhibition of chick cochlear hair cells (1992) Proc Biol Sci, 248, pp. 35-40
  • Fuchs, P.A., Lehar, M., Hiel, H., Ultrastructure of cisternal synapses on outer hair cells of the mouse cochlea (2014) J Comp Neurol, 522, pp. 717-729
  • Galambos, R., Suppression of auditory nerve activity by stimulation of efferent fibers to the cochlea (1956) J Neurophysiol, 19, pp. 424-437
  • Gifford, M.L., Guinan, J.J., Jr., Effects of electrical stimulation of medial olivocochlear neurons on ipsilateral and contralateral cochlear responses (1987) Hear Res, 29, pp. 179-194
  • Glowatzki, E., Fuchs, P.A., Cholinergic synaptic inhibition of inner hair cells in the neonatal mammalian cochlea (2000) Science, 288, pp. 2366-2368
  • Goutman, J.D., Fuchs, P.A., Glowatzki, E., Facilitating efferent inhibition of inner hair cells in the cochlea of the neonatal rat (2005) J Physiol, 566, pp. 49-59
  • Guinan, J.J., Physiology of olivocochlear efferents (1996) The Cochlea, pp. 435-502. , Dallos P, Popper AN, Fay RR, eds.), New York, NY: Springer
  • Guinan, J.J., Jr., Olivocochlear efferents: Anatomy, physiology, function, and the measurement of efferent effects in humans (2006) Ear Hear, 27, pp. 589-607
  • Holley, M.C., Keynote review: The auditory system, hearing loss and potential targets for drug development (2005) Drug Discov Today, 10, pp. 1269-1282
  • Housley, G.D., Ashmore, J.F., Direct measurement of the action of acetylcholine on isolated outer hair cells of the guinea pig cochlea (1991) Proc Biol Sci, 244, pp. 161-167
  • Hudspeth, A.J., Integrating the active process of hair cells with cochlear function (2014) Nat Rev Neurosci, 15, pp. 600-614
  • Jackman, S.L., Regehr, W.G., The mechanisms and functions of synaptic facilitation (2017) Neuron, 94, pp. 447-464
  • Johnson, S.L., Eckrich, T., Kuhn, S., Zampini, V., Franz, C., Ranatunga, K.M., Roberts, T.P., Marcotti, W., Positiondependent patterning of spontaneous action potentials in immature cochlear inner hair cells (2011) Nat Neurosci, 14, pp. 711-717
  • Kandler, K., Activity-dependent organization of inhibitory circuits: Lessons from the auditory system (2004) Curr Opin Neurobiol, 14, pp. 96-104
  • Katz, B., Miledi, R., The role of calcium in neuromuscular facilitation (1968) J Physiol, 195, pp. 481-492
  • Katz, E., Elgoyhen, A.B., Short-term plasticity and modulation of synaptic transmission at mammalian inhibitory cholinergic olivocochlear synapses (2014) Front Syst Neurosci, 8, p. 224
  • Katz, E., Elgoyhen, A.B., Mez-Casati, G., Me, K.M., Vetter, D.E., Fuchs, P.A., Glowatzki, E., Developmental regulation of nicotinic synapses on cochlear inner hair cells (2004) J Neurosci, 24, pp. 7814-7820
  • Kawase, T., Delgutte, B., Liberman, M.C., Antimasking effects of the olivocochlear reflex: II. enhancement of auditory-nerve response to masked tones (1993) J Neurophysiol, 70, pp. 2533-2549
  • Krishnaswamy, A., Cooper, E., An activity-dependent retrograde signal induces the expression of the high-affinity choline transporter in cholinergic neurons (2009) Neuron, 61, pp. 272-286
  • Kros, C.J., Ruppersberg, J.P., Rüsch, A., Expression of a potassium current in inner hair cells during development of hearing in mice (1998) Nature, 394, pp. 281-284
  • Leao, R.N., Sun, H., Svahn, K., Berntson, A., Youssoufian, M., Paolini, A.G., Fyffe, R.E., Walmsley, B., Topographic organization in the auditory brainstem of juvenile mice is disrupted in congenital deafness (2006) J Physiol, 571, pp. 563-578
  • Liberman, M.C., Brown, M.C., Physiology and anatomy of single olivocochlear neurons in the cat (1986) Hear Res, 24, pp. 17-36
  • Lioudyno, M., Hiel, H., Kong, J.H., Katz, E., Waldman, E., Parameshwaran-Iyer, S., Glowatzki, E., Fuchs, P.A., A “synaptoplasmic cistern” mediates rapid inhibition of cochlear hair cells (2004) J Neurosci, 24, pp. 11160-11164
  • Lukashkin, A.N., Lukashkina, V.A., Russell, I.J., One source for distortion product otoacoustic emissions generated by low-and high-level primaries (2002) J Acoust Soc Am, 111, pp. 2740-2748
  • Lynch, E.D., Kil, J., Compounds for the prevention and treatment of noise-induced hearing loss (2005) Drug Discov Today, 10, pp. 1291-1298
  • Maison, S.F., Adams, J.C., Liberman, M.C., Olivocochlear innervation in the mouse: Immunocytochemical maps, crossed versus uncrossed contributions, and transmitter colocalization (2003) J Comp Neurol, 455, pp. 406-416
  • Maison, S.F., Parker, L.L., Young, L., Adelman, J.P., Zuo, J., Liberman, M.C., Overexpression of SK2 channels enhances efferent suppression of cochlear responses without enhancing noise resistance (2007) J Neurophysiol, 97, pp. 2930-2936
  • Maison, S.F., Vetter, D.E., Liberman, M.C., A novel effect of cochlear efferents: In vivo response enhancement does not require alpha9 cholinergic receptors (2007) J Neurophysiol, 97, pp. 3269-3278
  • Marcotti, W., Johnson, S.L., Rusch, A., Kros, C.J., Sodium and calcium currents shape action potentials in immature mouse inner hair cells (2003) J Physiol, 552, pp. 743-761
  • Moglie, M.J., Fuchs, P.A., Elgoyhen, A.B., Goutman, J.D., Compartmentalization of antagonistic Ca2+ signals in developing cochlear hair cells (2018) Proc Natl Acad Sci U S A, 115, pp. E2095-E2104
  • Murthy, V., Taranda, J., Elgoyhen, A.B., Vetter, D.E., Activity of nAChRs containing α9 subunits modulates synapse stabilization via bidirectional signaling programs (2009) Dev Neurobiol, 69, pp. 931-949
  • Murthy, V., Maison, S.F., Taranda, J., Haque, N., Bond, C.T., Elgoyhen, A.B., Adelman, J.P., Vetter, D.E., SK2 channels are required for function and long-term survival of efferent synapses on mammalian outer hair cells (2009) Mol Cell Neurosci, 40, pp. 39-49
  • Oliver, D., Klöcker, N., Schuck, J., Baukrowitz, T., Ruppersberg, J.P., Fakler, B., Gating of Ca2+-activated K+ channels controls fast inhibitory synaptic transmission at auditory outer hair cells (2000) Neuron, 26, pp. 595-601
  • Plazas, P.V., De Rosa, M.J., Gomez-Casati, M.E., Verbitsky, M., Weisstaub, N., Katz, E., Bouzat, C., Elgoyhen, A.B., Key roles of hydrophobic rings ofTM2in gating of the alpha9alpha10 nicotinic cholinergic receptor (2005) Br J Pharmacol, 145, pp. 963-974
  • Robertson, D., Gummer, M., Physiological and morphological characterization of efferent neurones in the guinea pig cochlea (1985) Hear Res, 20, pp. 63-77
  • Robinson, B.L., McAlpine, D., Gain control mechanisms in the auditory pathway (2009) Curr Opin Neurobiol, 19, pp. 402-407
  • Roux, I., Wersinger, E., McIntosh, J.M., Fuchs, P.A., Glowatzki, E., Onset of cholinergic efferent synaptic function in sensory hair cells of the rat cochlea (2011) J Neurosci, 31, pp. 15092-15101
  • Sendin, G., Bourien, J., Rassendren, F., Puel, J.L., Nouvian, R., Spatiotemporal pattern of action potential firing in developing inner hair cells of the mouse cochlea (2014) Proc Natl Acad Sci U S A, 111, pp. 1999-2004
  • Simmons, D.D., Development of the inner ear efferent system across vertebrate species (2002) J Neurobiol, 53, pp. 228-250
  • Sridhar, T.S., Liberman, M.C., Brown, M.C., Sewell, W.F., A novel cholinergic “slow effect” of efferent stimulation on cochlear potentials in the guinea pig (1995) J Neurosci, 15, pp. 3667-3678
  • Sridhar, T.S., Brown, M.C., Sewell, W.F., Unique postsynaptic signaling at the hair cell efferent synapse permits calcium to evoke changes on two time scales (1997) J Neurosci, 17, pp. 428-437
  • Suga, N., Gao, E., Zhang, Y., Ma, X., Olsen, J.F., The corticofugal system for hearing: Recent progress (2000) Proc Natl Acad Sci U S A, 97, pp. 11807-11814
  • Taranda, J., Maison, S.F., Ballestero, J.A., Katz, E., Savino, J., Vetter, D.E., Boulter, J., Elgoyhen, A.B., A point mutation in the hair cell nicotinic cholinergic receptor prolongs cochlear inhibition and enhances noise protection (2009) Plos Biol, 7
  • Tritsch, N.X., Rodríguez-Contreras, A., Crins, T.T., Wang, H.C., Borst, J.G., Bergles, D.E., Calcium action potentials in hair cells pattern auditory neuron activity before hearing onset (2010) Nat Neurosci, 13, pp. 1050-1052
  • Verbitsky, M., Rothlin, C.V., Katz, E., Elgoyhen, A.B., Mixed nicotinic-muscarinic properties of the α9 nicotinic cholinergic receptor (2000) Neuropharmacology, 39, pp. 2515-2524
  • Vetter, D.E., Lieberman, M.C., Mann, J., Barhanin, J., Boulter, J., Brown, M.C., Saffiote-Kollman, J., Elgoyhen, A.B., Role of α9 nicotinic ACh receptor subunits in the development and function of cochlear efferent innervation (1999) Neuron, 23, pp. 93-103
  • Vetter, D.E., Katz, E., Maison, S.F., Taranda, J., Turcan, S., Ballestero, J., Liberman, M.C., Boulter, J., The α10 nicotinic acetylcholine receptor subunit is required for normal synaptic function and integrity of the olivocochlear system (2007) Proc Natl Acad Sci U S A, 104, pp. 20594-20599
  • Wang, J., Lindstrom, J., Orthosteric and allosteric potentiation of heteromeric neuronal nicotinic acetylcholine receptors (2017) Br J Pharmacol. Advance Online Publication, , Retrieved Feb 15, 2017
  • Wedemeyer, C., Zorrillade San Martín, J., Ballestero, J., Gómez-Casati, M.E., Torbidoni, A.V., Fuchs, P.A., Bettler, B., Katz, E., Activation of presynaptic GABAB(1a,2) receptors inhibits synaptic transmission at mammalian inhibitory cholinergic olivocochlear-hair cell synapses (2013) J Neurosci, 33, pp. 15477-15487
  • Wersinger, E., McLean, W.J., Fuchs, P.A., Pyott, S.J., BK channels mediate cholinergic inhibition of high-frequency cochlear hair cells (2010) Plos One, 5
  • Wiederhold, M.L., Kiang, N.Y., Effects of electrical stimulation of the crossed olivocochlear bundle on cat single auditory nerve fibres (1970) J Acoust Soc Am, 48, pp. 950-965
  • Zucker, R.S., Regehr, W.G., Short-term synaptic plasticity (2002) Annu Rev Physiol, 64, pp. 355-405

Citas:

---------- APA ----------
Wedemeyer, C., Vattino, L.G., Moglie, M.J., Ballestero, J., Maison, S.F., Di Guilmi, M.N., Taranda, J.,..., Elgoyhen, A.B. (2018) . A gain-of-function mutation in the α9 nicotinic acetylcholine receptor alters medial olivocochlear efferent short-term synaptic plasticity. Journal of Neuroscience, 38(16), 3939-3954.
http://dx.doi.org/10.1523/JNEUROSCI.2528-17.2018
---------- CHICAGO ----------
Wedemeyer, C., Vattino, L.G., Moglie, M.J., Ballestero, J., Maison, S.F., Di Guilmi, M.N., et al. "A gain-of-function mutation in the α9 nicotinic acetylcholine receptor alters medial olivocochlear efferent short-term synaptic plasticity" . Journal of Neuroscience 38, no. 16 (2018) : 3939-3954.
http://dx.doi.org/10.1523/JNEUROSCI.2528-17.2018
---------- MLA ----------
Wedemeyer, C., Vattino, L.G., Moglie, M.J., Ballestero, J., Maison, S.F., Di Guilmi, M.N., et al. "A gain-of-function mutation in the α9 nicotinic acetylcholine receptor alters medial olivocochlear efferent short-term synaptic plasticity" . Journal of Neuroscience, vol. 38, no. 16, 2018, pp. 3939-3954.
http://dx.doi.org/10.1523/JNEUROSCI.2528-17.2018
---------- VANCOUVER ----------
Wedemeyer, C., Vattino, L.G., Moglie, M.J., Ballestero, J., Maison, S.F., Di Guilmi, M.N., et al. A gain-of-function mutation in the α9 nicotinic acetylcholine receptor alters medial olivocochlear efferent short-term synaptic plasticity. J. Neurosci. 2018;38(16):3939-3954.
http://dx.doi.org/10.1523/JNEUROSCI.2528-17.2018