Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Motoneurons are not mere output units of neuronal circuits that control motor behavior but participate in pattern generation. Research on the circuit that controls the crawling motor behavior in leeches indicated that motoneurons participate as modulators of this rhythmic motor pattern. Crawling results from successive bouts of elongation and contraction of the whole leech body. In the isolated segmental ganglia, dopamine can induce a rhythmic antiphasic activity of the motoneurons that control contraction (DE-3 motoneurons) and elongation (CV motoneurons). The study was performed in isolated ganglia where manipulation of the activity of specific motoneurons was performed in the course of fictive crawling (crawling). In this study, the membrane potential of CV was manipulated while crawling was monitored through the rhythmic activity of DE-3. Matching behavioral observations that show that elongation dominates the rhythmic pattern, the electrophysiological activity of CV motoneurons dominates the cycle. Brief excitation of CV motoneurons during crawling episodes resets the rhythmic activity of DE-3, indicating that CV feeds back to the rhythmic pattern generator. CV hyperpolarization accelerated the rhythm to an extent that depended on the magnitude of the cycle period, suggesting that CV exerted a positive feedback on the unit(s) of the pattern generator that controls the elongation phase. A simple computational model was implemented to test the consequences of such feedback. The simulations indicate that the duty cycle of CV depended on the strength of the positive feedback between CV and the pattern generator circuit. © 2017 the authors.

Registro:

Documento: Artículo
Título:Feedback signal from motoneurons influences a rhythmic pattern generator
Autor:Rotstein, H.G.; Schneider, E.; Szczupak, L.
Filiación:Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, United States
Departamento de Fisiología, Biología Molecular y Celular Dr. Héctor Maldonado, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, 1428, Argentina
Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET-Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
Palabras clave:Duty cycle; Dye coupling; Lecar model; Leech crawling; Left-right symmetry; Morris; Phase relationship; Article; computer model; connectome; electrophysiological procedures; ganglion; hyperpolarization; motoneuron; muscle cell; nerve cell; nerve conduction; neurite; neurofeedback; nonhuman; pattern generator; priority journal; rhythm; adaptation; animal; central pattern generator; leech; locomotion; motoneuron; nerve cell network; periodicity; physiological feedback; physiology; Adaptation, Physiological; Animals; Central Pattern Generators; Feedback, Physiological; Leeches; Locomotion; Motor Neurons; Nerve Net; Periodicity
Año:2017
Volumen:37
Número:38
Página de inicio:9149
Página de fin:9159
DOI: http://dx.doi.org/10.1523/JNEUROSCI.0756-17.2017
Título revista:Journal of Neuroscience
Título revista abreviado:J. Neurosci.
ISSN:02706474
CODEN:JNRSD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02706474_v37_n38_p9149_Rotstein

Referencias:

  • Baader, A.P., Kristan, W.B., Parallel pathways coordinate crawling in the medicinal leech, Hirudo medicinalis (1995) J Comp Physiol A, 176, pp. 715-726
  • Barth, F.G., How to catch the wind: Spider hairs specialized for sensing the movement of air (2000) Naturwissenschaften, 87, pp. 51-58
  • Büschges, A., Akay, T., Gabriel, J.P., Schmidt, J., Organizing network action for locomotion: Insights from studying insect walking (2008) Brain Res Rev, 57, pp. 162-171
  • Cacciatore, T.W., Rozenshteyn, R., Kristan, W.B., Jr., Kinematics and modeling of leech crawling: Evidence for an oscillatory behavior produced by propagating waves of excitation (2000) J Neurosci, 20, pp. 1643-1655
  • Drew, T., Marigold, D.S., Taking the next step: Cortical contributions to the control of locomotion (2015) Curr Opin Neurobiol, 33, pp. 25-33
  • Eisenhart, F.J., Cacciatore, T.W., Kristan, W.B., A central pattern genera- tor underlies crawling in the medicinal leech (2000) J Comp Physiol a Neuroethol Sens Neural Behav Physiol, 186, pp. 631-643
  • Esch, T., Mesce, K.A., Kristan, W.B., Evidence for sequential decision making in the medicinal leech (2002) J Neurosci, 22, pp. 11045-11054
  • Fan, R.J., Marin-Burgin, A., French, K.A., Otto Friesen, W., A dye mixture (Neurobiotin and Alexa 488) reveals extensive dye-coupling among neurons in leeches: Physiology confirms the connections (2005) J Comp Physiol a Neuroethol Sens Neural Behav Physiol, 191, pp. 1157-1171
  • Friesen, W.O., Poon, M., Stent, G.S., An oscillatory neuronal circuit generating a locomotory rhythm (1976) Proc Natl Acad Sci U S A, 73, pp. 3734-3738
  • Friesen, W.O., Poon, M., Stent, G.S., Neuronal control of swimming in the medicinal leech: IV. Identification of a network of oscillatory interneurones (1978) J Exp Biol, 75, pp. 25-43
  • Georgopoulos, A.P., Carpenter, A.F., Coding of movements in the motor cortex (2015) Curr Opin Neurobiol, 33, pp. 34-39
  • Goulding, M., Circuits controlling vertebrate locomotion: Moving in a new direction (2009) Nat Rev Neurosci, 10, pp. 507-518
  • Gray, J., Lissmann, H.W., Pumphrey, R.J., The mechanism of locomotion in the leech (Hirudo medicinalis Ray (1938) J Exp Biol, 15, pp. 408-430
  • Grillner, S., Biological pattern generation: The cellular and computational logic of networks in motion (2006) Neuron, 52, pp. 751-766
  • Hultborn, H., Spinal reflexes, mechanisms and concepts: From Eccles to Lundberg and beyond (2006) Prog Neurobiol, 78, pp. 215-232
  • Kristan, W.B., Jr., Calabrese, R.L., Rhythmic swimming activity in neurones of the isolated nerve cord of the leech (1976) J Exp Biol, 65, pp. 643-668
  • Kristan, W.B., Jr., Calabrese, R.L., Friesen, W.O., Neuronal control of leech behavior (2005) Prog Neurobiol, 76, pp. 279-327
  • Matsunaga, T., Kohsaka, H., Nose, A., Gap junction-mediated signaling from motor neurons regulates motor generation in the central circuits of larval Drosophila (2017) J Neurosci, 37, pp. 2045-2060
  • Maynard, D.M., Selverston, A.I., Organization of the stomatogastric ganglion of the spiny lobster (1975) J Comp Physiol a Neuroethol Sens Neural Behav Physiol, 100, pp. 161-182
  • Moore, N.J., Bhumbra, G.S., Foster, J.D., Beato, M., Synaptic connectivity between Renshaw cells and motoneurons in the recurrent inhibitory circuit of the spinal cord (2015) J Neurosci, 35, pp. 13673-13686
  • Morris, C., Lecar, H., Voltage oscillations in the barnacle giant muscle fiber (1981) Biophys J, 35, pp. 193-213
  • Muller, K.J., Nicholls, J.G., Stent, G.S., (1981) Neurobiology of the Leech, , Cold Spring Harbor, NY: Cold Spring Harbor Laboratory
  • Nishimaru, H., Restrepo, C.E., Kiehn, O., Activity of Renshaw cells during locomotor-like rhythmic activity in the isolated spinal cord of neonatal mice (2006) J Neurosci, 26, pp. 5320-5328
  • Ort, C.A., Kristan, W.B., Stent, G.S., Neuronal control of swimming in the medicinal leech (1974) J Comp Physiol a Neuroethol Sens Neural Behav Physiol, 94, pp. 121-154
  • Bernardo Perez-Etchegoyen, C., Alvarez, R.J., Rodriguez, M.J., Szczupak, L., The activity of leech motoneurons during motor patterns is regulated by intrinsic properties and synaptic inputs (2012) J Comp Physiol a Neuroethol Sens Neural Behav Physiol, 198, pp. 239-251
  • Poon, M., Friesen, W.O., Stent, G.S., Neuronal control of swimming in the medicinal leech: V. Connexions between the oscillatory interneurones and the motor neurones (1978) J Exp Biol, 75, pp. 45-63
  • Puhl, J.G., Mesce, K.A., Dopamine activates the motor pattern for crawling in the medicinal leech (2008) J Neurosci, 28, pp. 4192-4200
  • Puhl, J.G., Masino, M.A., Mesce, K.A., Necessary, sufficient and permissive: A single locomotor command neuron important for intersegmental coordination (2012) J Neurosci, 32, pp. 17646-17657
  • Rela, L., Szczupak, L., In situ characterization of a rectifying electrical junction (2007) J Neurophysiol, 97, pp. 1405-1412
  • Rinzel, J., Ermentrout, B., Analysis of neural excitability and oscillations (1998) Methods in Neural Modeling, pp. 251-292. , Koch C, Segev I, Cambridge, MA: Massachusetts Institute of Technology
  • Selverston, A.I., Moulins, M., Oscillatory neural networks (1985) Annu Rev Physiol, 47, pp. 29-48
  • Song, J., Ampatzis, K., Björnfors, E.R., El Manira, A., Motor neurons control locomotor circuit function retrogradely via gap junctions (2016) Nature, 529, pp. 399-402
  • Spardy, L.E., Markin, S.N., Shevtsova, N.A., Prilutsky, B.I., Rybak, I.A., Rubin, J.E., A dynamical systems analysis of afferent control in a neurome-chanical model of locomotion: I. Rhythm generation (2011) J Neural Eng, 8
  • Staras, K., Kemenes, G., Benjamin, P.R., Pattern-generating role for motoneurons in a rhythmically active neuronal network (1998) J Neurosci, 18, pp. 3669-3688
  • Stern-Tomlinson, W., Nusbaum, M.P., Perez, L.E., Kristan, W.B., A kinematic study of crawling behavior in the leech, Hirudo medicinalis (1986) J Comp Physiol A, 158, pp. 593-603
  • Stuart, A.E., Physiological and morphological properties of motoneurones in the central nervous system of the leech (1970) J Physiol (Lond), 209, pp. 627-646
  • Szczupak, L., Recurrent inhibition in motor systems, a comparative analysis (2014) J Physiol Paris, 108, pp. 148-154
  • Wadepuhl, M., Depression of excitatory motoneurones by a single neurone in the leech central nervous system (1989) J Exp Biol, 143, pp. 509-527
  • Wagenaar, D.A., A classic model animal in the 21st century: Recent lessons from the leech nervous system (2015) J Exp Biol, 218, pp. 3353-3359
  • Yakovenko, S., McCrea, D.A., Stecina, K., Prochazka, A., Control of locomotor cycle durations (2005) J Neurophysiol, 94, pp. 1057-1065

Citas:

---------- APA ----------
Rotstein, H.G., Schneider, E. & Szczupak, L. (2017) . Feedback signal from motoneurons influences a rhythmic pattern generator. Journal of Neuroscience, 37(38), 9149-9159.
http://dx.doi.org/10.1523/JNEUROSCI.0756-17.2017
---------- CHICAGO ----------
Rotstein, H.G., Schneider, E., Szczupak, L. "Feedback signal from motoneurons influences a rhythmic pattern generator" . Journal of Neuroscience 37, no. 38 (2017) : 9149-9159.
http://dx.doi.org/10.1523/JNEUROSCI.0756-17.2017
---------- MLA ----------
Rotstein, H.G., Schneider, E., Szczupak, L. "Feedback signal from motoneurons influences a rhythmic pattern generator" . Journal of Neuroscience, vol. 37, no. 38, 2017, pp. 9149-9159.
http://dx.doi.org/10.1523/JNEUROSCI.0756-17.2017
---------- VANCOUVER ----------
Rotstein, H.G., Schneider, E., Szczupak, L. Feedback signal from motoneurons influences a rhythmic pattern generator. J. Neurosci. 2017;37(38):9149-9159.
http://dx.doi.org/10.1523/JNEUROSCI.0756-17.2017