Artículo

Chen, J.-Y.; Marachlian, E.; Assisi, C.; Huerta, R.; Smith, B.H.; Locatelli, F.; Bazhenov, M. "Learning modifies odor mixture processing to improve detection of relevant components" (2015) Journal of Neuroscience. 35(1):179-197
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Honey bees have arich repertoireofolfactory learning behaviors, and they therefore arean excellent modelto study plasticity in olfactory circuits. Recent behavioral, physiological, and molecular evidence suggested that the antennal lobe, the first relay of the olfactory system in insects and analog to the olfactory bulb in vertebrates, is involved in associative and nonassociative olfactory learning. Here we use calcium imaging to reveal how responses across antennal lobe projection neurons change after association of an input odor with appetitive reinforcement. After appetitive conditioning to 1-hexanol, the representation of an odor mixture containing 1-hexanol becomes more similar to this odor and less similar to the background odor acetophenone. We then apply computational modeling to investigate how changes in synaptic connectivity can account for the observed plasticity. Our study suggests that experience-dependent modulationofinhibitory interactionsintheantennallobe aids perceptionofsalientodorcomponentsmixed withbehaviorally irrelevant background odors. © 2015 the authors.

Registro:

Documento: Artículo
Título:Learning modifies odor mixture processing to improve detection of relevant components
Autor:Chen, J.-Y.; Marachlian, E.; Assisi, C.; Huerta, R.; Smith, B.H.; Locatelli, F.; Bazhenov, M.
Filiación:Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, United States
Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, IFIByNE-CONICET, Buenos, AI 1428, Argentina
Departamento de Física, Universidad de Buenos Aires, Buenos, AI 1428, Argentina
Biocircuits Institute, University of California, San Diego, LJ 92093, United States
School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States
Palabras clave:Antennal lobe; Honey bees; Olfaction; Olfactory learning; acetophenone; hexanol; animal experiment; Article; connectome; geometry; image analysis; imaging; learning; nerve cell plasticity; nerve stimulation; nonhuman; odor; olfactory bulb; principal component analysis; spatiotemporal analysis; animal; bee; conditioning; female; learning; nerve cell network; odor; olfactory system; physiology; Animals; Bees; Conditioning (Psychology); Female; Learning; Nerve Net; Odors; Olfactory Pathways; Smell
Año:2015
Volumen:35
Número:1
Página de inicio:179
Página de fin:197
DOI: http://dx.doi.org/10.1523/JNEUROSCI.2345-14.2015
Título revista:Journal of Neuroscience
Título revista abreviado:J. Neurosci.
ISSN:02706474
CODEN:JNRSD
CAS:acetophenone, 98-86-2; hexanol, 111-27-3, 25917-35-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02706474_v35_n1_p179_Chen

Referencias:

  • Antonov, I., Antonova, I., Kandel, E.R., Hawkins, R.D., Activity-dependent presynaptic facilitation and hebbian LTP are both required and interact during classical conditioning in Aplysia (2003) Neuron, 37, pp. 135-147
  • Aso, Y., Siwanowicz, I., Bräcker, L., Ito, K., Kitamoto, T., Tanimoto, H., Specific dopaminergic neurons for the formation of labile aversive memory (2010) Curr Biol, 20, pp. 1445-1451
  • Assisi, C., Stopfer, M., Laurent, G., Bazhenov, M., Adaptive regulation of sparseness by feedforward inhibition (2007) Nat Neurosci, 10, pp. 1176-1184
  • Bazhenov, M., Stopfer, M., Rabinovich, M., Abarbanel, H.D., Sejnowski, T.J., Laurent, G., Model ofcellular and network mechanisms for odor-evoked temporal patterning in the locust antennal lobe (2001) Neuron, 30, p. 581
  • Bazhenov, M., Stopfer, M., Rabinovich, M., Huerta, R., Abarbanel, H.D., Sejnowski, T.J., Laurent, G., Model of transient oscillatory synchronization in the locust antennal lobe (2001) Neuron, 30, pp. 553-567
  • Bazhenov, M., Stopfer, M., Sejnowski, T.J., Laurent, G., Fast odor learning improves reliability ofodor responses in the locust antennal lobe (2005) Neuron, 46, pp. 483-492
  • Bazhenov, M., Huerta, R., Smith, B.H., A computational framework for understanding decision making through integration of basic learning rules (2013) J Neurosci, 33, pp. 5686-5697
  • Bitterman, M.E., Menzel, R., Fietz, A., Schäfer, S., Classical conditioning of proboscis extension in honeybees (Apis mellifera) (1983) J Comp Psychol, 97, pp. 107-119
  • Busto, G.U., Cervantes-Sandoval, I., Davis, R.L., Olfactory learning in Drosophila (2010) Physiology (Bethesda), 25, pp. 338-346
  • Capogna, M., Gähwiler, B.H., Thompson, S.M., Presynaptic enhance-mentofinhibitory synaptic transmissionby protein kinasesAandCinthe rat hippocampus in vitro (1995) J Neurosci, 15, pp. 1249-1260
  • Cassenaer, S., Laurent, G., Hebbian STDP in mushroom bodies facilitates the synchronous flow of olfactory information in locusts (2007) Nature, 448, pp. 709-713
  • Chandra, S.B., Hunt, G.J., Cobey, S., Smith, B.H., Quantitative trait loci associated with reversal learning and latent inhibition in honeybees (Apis mellifera) (2001) Behav Genet, 31, pp. 275-285
  • Chandra, S.B., Wright, G.A., Smith, B.H., Latent inhibition in the honey bee, Apis mellifera: Is it a unitary phenomenon? (2010) Anim Cogn, 13, pp. 805-815
  • Daly, K.C., Christensen, T.A., Lei, H., Smith, B.H., Hildebrand, J.G., Learning modulates the ensemble representations for odors in primary olfactory networks (2004) Proc Natl Acad Sci U S A, 101, pp. 10476-10481
  • Das, S., Sadanandappa, M.K., Dervan, A., Larkin, A., Lee, J.A., Sudhakaran, I.P., Priya, R., Ramaswami, M., Plasticity of local GABAergic interneurons drives olfactory habituation (2011) Proc Natl Acad Sci U S A, 108, pp. E646-E654
  • Deisig, N., Giurfa, M., Lachnit, H., Sandoz, J.C., Neural representation of olfactory mixtures in the honeybee antennal lobe (2006) Eur J Neurosci, 24, pp. 1161-1174
  • Deisig, N., Giurfa, M., Sandoz, J.C., Antennal lobe processing increases separability of odor mixture representations in the honeybee (2010) J Neuro-Physiol, 103, pp. 2185-2194
  • Ditzen, M., Evers, J.F., Galizia, C.G., Odor similarity does not influence the time needed for odor processing (2003) Chem Senses, 28, pp. 781-789
  • Faber, T., Joerges, J., Menzel, R., Associative learning modifies neural representations of odors in the insect brain (1999) Nat Neurosci, 2, pp. 74-78
  • Farooqui, T., Octopamine-mediated neuronal plasticity in honeybees: Implications for olfactory dysfunction in humans (2007) Neuroscientist, 13, pp. 304-322
  • Farooqui, T., Robinson, K., Vaessin, H., Smith, B.H., Modulation of early olfactory processing by an octopaminergic reinforcement pathway in the honeybee (2003) J Neurosci, 23, pp. 5370-5380
  • Fdez Galán, R., Sachse, S., Galizia, C.G., Herz, A.V., Odor-driven attractor dynamics inthe antennal lobe allow for simple and rapid olfactory pattern classification (2004) Neural Comput, 16, pp. 999-1012
  • Fernandez, P.C., Locatelli, F.F., Person-Rennell, N., Deleo, G., Smith, B.H., Associative conditioning tunes transient dynamics of early olfactory processing (2009) J Neurosci, 29, pp. 10191-10202
  • Flanagan, D., Mercer, A.R., An atlas and 3-D reconstruction of the an-tennal lobes in the worker honey bee, Apis mellifera L. (Hymenoptera: Apidae) (1989) Int J Insect Morphol Embryol, 18, pp. 145-159
  • Galizia, C.G., Rössler, W., Parallel olfactory systems in insects: Anatomy and function (2010) Annu Rev Entomol, 55, pp. 399-420
  • Galizia, C.G., Vetter, R.S., Optical methods for analyzing odor-evoked activity in the insect brain (2004) Methods in Insect Sensory Neuroscience, pp. 349-388. , Christensen TA, ed.), Boca Raton, FL: CRC
  • Galizia, C.G., McIlwrath, S.L., Menzel, R., A digital three-dimensional atlas of the honeybee antennal lobe based on optical sections acquired by confocal microscopy (1999) Cell Tissue Res, 295, pp. 383-394
  • Giraudet, P., Berthommier, F., Chaput, M., Mitral cell temporal response patterns evokedbyodor mixturesin the rat olfactory bulb (2002) J Neurophysiol, 88, pp. 829-838
  • Grohmann, L., Blenau, W., Erber, J., Ebert, P.R., Strünker, T., Baumann, A., Molecular and functional characterization of an octopamine receptor from honeybee (Apis mellifera) brain (2003) Jneurochem, 86, pp. 725-735
  • Hammer, M., An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees (1993) Nature, 366, pp. 59-63
  • Hammer, M., Menzel, R., Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees (1998) Learn Mem, 5, pp. 146-156
  • Han, K.A., Millar, N.S., Davis, R.L., A novel octopamine receptor with preferential expression in Drosophila mushroom bodies (1998) J Neurosci, 18, p. 3
  • Hodgkin, A.L., Huxley, A.F., A quantitative description of membrane current and its application to conduction and excitation in nerve (1952) J Physiol, 117, pp. 500-544
  • Ito, I., Bazhenov, M., Ong, R.C., Raman, B., Stopfer, M., Frequency transitions in odor-evoked neural oscillations (2009) Neuron, 64, pp. 692-706
  • Keene, A.C., Waddell, S., Drosophila olfactory memory: Single genes to (2007) Nat Rev Neurosci, 8, pp. 341-354
  • Kirschner, S., Kleineidam, C.J., Zube, C., Rybak, J., Grünewald, B., Rössler, W., Dual olfactory pathway in the honeybee (2006) Apis Mellifera. J Comp Neurol, 499, pp. 933-952
  • Kreiss, L., Eichmüller, S., Bicker, G., Rapus, J., Eckert, M., Octopamine-like immunoreactivity in the brain and subesophageal ganglion of the honeybee (1994) J Comp Neurol, 348, pp. 583-595
  • Larkin, A., Karak, S., Priya, R., Das, A., Ayyub, C., Ito, K., Rodrigues, V., Ramaswami, M., Central synaptic mechanisms underlie short-term olfactory habituation in Drosophila larvae (2010) Learn Mem, 17, pp. 645-653
  • Linster, C., Smith, B.H., A computational model of the response of honey bee antennal lobe circuitry to odor mixtures: Overshadowing, blocking and unblocking can arise from lateral inhibition (1997) Behav Brain Res, 87, pp. 1-14
  • Locatelli, F.F., Fernandez, P.C., Villareal, F., Muezzinoglu, K., Huerta, R., Galizia, C.G., Smith, B.H., Nonassociative plasticity alters competitive interactions among mixture components in early olfactory processing (2013) Eur J Neurosci, 37, pp. 63-79
  • Mauelshagen, J., Neural correlates of olfactory learning paradigms in an identified neuron in the honeybee brain (1993) J Neurophysiol, 69, pp. 609-625
  • Menzel, R., Learning, memory, and cognition in honeybees (1990) Neu-<Checkcomponent>Robiologyof Comparative Cognition</Checkcomponent>, p. 292. , Kersner RP, Olton DS, eds, Hillside, NJ: Lawrence Erlbaum
  • Muller, U., Learning in honeybees: From molecules to behaviour (2002) Zoology (Jena), 105, pp. 313-320
  • Okada, R., Rybak, J., Manz, G., Menzel, R., Learning-related plasticity in PE1 and other mushroom body-extrinsic neurons in the honeybee brain (2007) J Neurosci, 27, pp. 11736-11747
  • Rath, L., Giovanni Galizia, C., Szyszka, P., Multiple memory traces after associative learning in the honey bee antennal lobe (2011) Eur J Neurosci, 34, p. 3
  • Rein, J., Mustard, J.A., Strauch, M., Smith, B.H., Galizia, C.G., Octopamine modulates activity of neural networks in the honey bee antennal lobe (2013) J Comp Physiol a Neuroethol Sens Neural Behav Physiol, 199, pp. 947-962
  • Riemensperger, T., Völler, T., Stock, P., Buchner, E., Fiala, A., Punishment prediction by dopaminergic neurons in Drosophila (2005) Curr Biol, 15, pp. 1953-1960
  • Sachse, S., Galizia, C.G., Role of inhibition for temporal and spatial odor representation in olfactory output neurons: A calcium imaging study (2002) J Neurophysiol, 87, pp. 1106-1117
  • Sachse, S., Rappert, A., Galizia, C.G., The spatial representation of chemical structures in the antennal lobe of honeybees: Steps towards the olfactory code (1999) Eur J Neurosci, 11, pp. 3970-3982
  • Sandoz, J.C., Olfactory perception and learning in the honey bee (Apis mellifera):Calcium imaging in the antenna lobe (2003) J Soc Biol, 197, pp. 277-282
  • Sandoz, J.C., Galizia, C.G., Menzel, R., Side-specific olfactory conditioning leads to more specific odor representation between sides but not within sides in the honeybee antennal lobes (2003) Neuroscience, 120, pp. 1137-1148
  • Schroll, C., Riemensperger, T., Bucher, D., Ehmer, J., Voller, T., Erbguth, K., Gerber, B., Fiala, A., Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae (2006) Curr Biol, 16, pp. 1741-1747
  • Schroter, U., Malun, D., Menzel, R., Innervation pattern of suboesopha-geal ventral unpaired median neurones in the honeybee brain (2007) Cell Tissue Res, 327, pp. 647-667
  • Schwaerzel, M., Monastirioti, M., Scholz, H., Friggi-Grelin, F., Birman, S., Heisen-Berg, M., Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila (2003) J Neurosci, 23, pp. 10495-10502
  • Shakiryanova, D., Zettel, G.M., Gu, T., Hewes, R.S., Levitan, E.S., Synaptic neuropeptide release induced by octopamine without Ca (2011) Proc Natl Acad Sci USA, 108, pp. 4477-4481
  • Shen, K., Tootoonian, S., Laurent, G., Encoding of mixtures in a simple olfactory system (2013) Neuron, 80, pp. 1246-1262
  • Silbering, A.F., Galizia, C.G., Processing of odor mixtures in the Drosophila antennal lobe reveals both global inhibition and glomerulus-specific interactions (2007) J Neurosci, 27, pp. 11966-11977
  • Sinakevitch, I.T., Smith, A.N., Locatelli, F., Huerta, R., Bazhenov, M., Smith, B.H., Apis mellifera octopamine receptor 1 (AmOA1) expression in antennal lobe networks of the honeybee (Apis mellifera) and fruit fly (Drosophila melanogaster) (2013) Front Syst Neurosci, 7, p. 70
  • Sinakevitch, I., Mustard, J.A., Smith, B.H., Distribution of the octopamine receptor AmOA1 in the honeybee brain (2011) Plos One, 6
  • Smith, B.H., The role of attention in learning about odorants (1996) Biol Bull, 191, pp. 76-83
  • Smith, B.H., Wright, G.A., Daly, K.S., Learning-based recognition and discrimination of floral odors (2006) The Biology of Floral Scents, pp. 263-295. , Dudareva N, Pichersky E, eds, Boca Raton, FL: CRC
  • Stopfer, M., Laurent, G., Short-term memory in olfactory network dynamics (1999) Nature, 402, pp. 664-668
  • Stopfer, M., Jayaraman, V., Laurent, G., Intensity versus identity coding in an olfactory system (2003) Neuron, 39, pp. 991-1004
  • Strube-Bloss, M.F., Nawrot, M.P., Menzel, R., Mushroom body output neurons encode odor-reward associations (2011) J Neurosci, 31, pp. 3129-3140
  • Sudhakaran, I.P., Holohan, E.E., Osman, S., Rodrigues, V., Vijayraghavan, K., Ra-Maswami, M., Plasticity of recurrent inhibition in the Drosophila antennal lobe (2012) J Neurosci, 32, pp. 7225-7231
  • Thompson, R.F., Spencer, W.A., Habituation: A model phenomenon for the study of neuronal substrates of behavior (1966) Psychol Rev, 73, pp. 16-43
  • Unoki, S., Matsumoto, Y., Mizunami, M., Participation of octo-paminergic reward system and dopaminergic punishment system in insect olfactory learning revealed by pharmacological study (2005) Eur J Neurosci, 22, pp. 1409-1416
  • Yu, D., Ponomarev, A., Davis, R.L., Altered representation of the spatial code for odors after olfactory classical conditioning; memory trace formation by synaptic recruitment (2004) Neuron, 42, pp. 437-449

Citas:

---------- APA ----------
Chen, J.-Y., Marachlian, E., Assisi, C., Huerta, R., Smith, B.H., Locatelli, F. & Bazhenov, M. (2015) . Learning modifies odor mixture processing to improve detection of relevant components. Journal of Neuroscience, 35(1), 179-197.
http://dx.doi.org/10.1523/JNEUROSCI.2345-14.2015
---------- CHICAGO ----------
Chen, J.-Y., Marachlian, E., Assisi, C., Huerta, R., Smith, B.H., Locatelli, F., et al. "Learning modifies odor mixture processing to improve detection of relevant components" . Journal of Neuroscience 35, no. 1 (2015) : 179-197.
http://dx.doi.org/10.1523/JNEUROSCI.2345-14.2015
---------- MLA ----------
Chen, J.-Y., Marachlian, E., Assisi, C., Huerta, R., Smith, B.H., Locatelli, F., et al. "Learning modifies odor mixture processing to improve detection of relevant components" . Journal of Neuroscience, vol. 35, no. 1, 2015, pp. 179-197.
http://dx.doi.org/10.1523/JNEUROSCI.2345-14.2015
---------- VANCOUVER ----------
Chen, J.-Y., Marachlian, E., Assisi, C., Huerta, R., Smith, B.H., Locatelli, F., et al. Learning modifies odor mixture processing to improve detection of relevant components. J. Neurosci. 2015;35(1):179-197.
http://dx.doi.org/10.1523/JNEUROSCI.2345-14.2015