Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In the mammalian inner ear, the gain control of auditory inputs is exerted by medial olivocochlear (MOC) neurons that innervate cochlear outer hair cells (OHCs). OHCs mechanically amplify the incoming sound waves by virtue of their electromotile properties while the MOC system reduces the gain of auditory inputs by inhibiting OHC function. How this process is orchestrated at the synaptic level remains unknown. In the present study, MOC firing was evoked by electrical stimulation in an isolated mouse cochlear preparation, while OHCs postsynaptic responses were monitored by whole-cell recordings. These recordings confirmed that electrically evoked IPSCs (eIPSCs) are mediated solely by α9β10 nAChRs functionally coupled to calcium-activated SK2 channels. Synaptic release occurred with low probability when MOC-OHC synapses were stimulated at 1 Hz. However, as the stimulation frequency was raised, the reliability of release increased due to presynaptic facilitation. In addition, the relatively slow decay of eIPSCs gave rise to temporal summation at stimulation frequencies >10 Hz. The combined effect of facilitation and summation resulted in a frequency-dependent increase in the average amplitude of inhibitory currents in OHCs. Thus, we have demonstrated that short-term plasticity is responsible for shaping MOC inhibition and, therefore, encodes the transfer function from efferent firing frequency to the gain of the cochlear amplifier. © 2011 the authors.

Registro:

Documento: Artículo
Título:Short-term synaptic plasticity regulates the level of olivocochlear inhibition to auditory hair cells
Autor:Ballestero, J.; de San Martín, J.Z.; Goutman, J.; Elgoyhen, A.B.; Fuchs, P.A.; Katz, E.
Filiación:Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Departamento de Fisiología Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Tercera Càtedra de Farmacología, Facultad de Medicina, 1121 Buenos Aires, Argentina
Department of Otolaringology, Head and Neck Surgery and Center for Hearing and Balance, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
Palabras clave:alpha9alpha10 nicotinic acetylcholine receptor; calcium activated potassium channel; nicotinic receptor; SK2 channel; unclassified drug; animal tissue; article; brain nerve cell; cochlea; controlled study; electrostimulation; facilitation; female; hair cell; inhibitory postsynaptic potential; male; medial olivocochlear neuron; mouse; nerve cell plasticity; neurotransmitter release; newborn; nonhuman; presynaptic facilitation; priority journal; synaptic transmission; temporal summation; Acoustic Stimulation; Animals; Animals, Newborn; Biophysics; Chelating Agents; Cochlea; Cochlear Nerve; Egtazic Acid; Electric Stimulation; Female; Glycine Agents; Hair Cells, Auditory; Indoles; Inhibitory Postsynaptic Potentials; Male; Mice; Mice, Inbred BALB C; Neural Inhibition; Patch-Clamp Techniques; Peptides; Serotonin Antagonists; Sodium Channel Blockers; Strychnine; Synapses; Temperature; Tetrodotoxin; Time Factors
Año:2011
Volumen:31
Número:41
Página de inicio:14763
Página de fin:14774
DOI: http://dx.doi.org/10.1523/JNEUROSCI.6788-10.2011
Título revista:Journal of Neuroscience
Título revista abreviado:J. Neurosci.
ISSN:02706474
CODEN:JNRSD
CAS:1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, 85233-19-8; Chelating Agents; Egtazic Acid, 67-42-5; Glycine Agents; Indoles; Peptides; Serotonin Antagonists; Sodium Channel Blockers; Strychnine, 57-24-9; Tetrodotoxin, 4368-28-9; iberiotoxin, 129203-60-7; tropisetron, 89565-68-4
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_02706474_v31_n41_p14763_Ballestero.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02706474_v31_n41_p14763_Ballestero

Referencias:

  • Allen, C., Stevens, C.F., An evaluation of causes for unreliability of synaptic transmission (1994) Proc Natl Acad Sci U S A, 91, pp. 10380-10383
  • Art, J.J., Fettiplace, R., Efferent desensitization of auditory nerve fibre responses in the cochlea of the turtle Pseudemys scripta elegans (1984) J Physiol, 356, pp. 507-523
  • Art, J.J., Fettiplace, R., Fuchs, P.A., Synaptic hyperpolarization and inhibition of turtle cochlear hair cells (1984) J Physiol, 356, pp. 525-550
  • Ashmore, J., Cochlear outer hair cell motility (2008) Physiol Rev, 88, pp. 173-210
  • Atluri, P.P., Regehr, W.G., Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse (1996) J Neurosci, 16, pp. 5661-5671
  • Auger, C., Marty, A., Quantal currents at single-site central synapses (2000) J Physiol, 526, pp. 3-11
  • Bekkers, J.M., Quantal analysis of synaptic transmission in the central nervous system (1994) Curr Opin Neurobiol, 4, pp. 360-365
  • Bekkers, J.M., Richerson, G.B., Stevens, C.F., Origin of variability in quantal size in cultured hippocampal neurons and hippocampal slices (1990) Proc Natl Acad Sci U S A, 87, pp. 5359-5362
  • Brown, M.C., Morphology and response properties of single olivocochlear fibers in the guinea pig (1989) Hear Res, 40, pp. 93-109
  • Brown, M.C., Nuttall, A.L., Efferent control of cochlear inner hair cell responses in the guinea-pig (1984) J Physiol, 354, pp. 625-646
  • Brown, M.C., Kujawa, S.G., Duca, M.L., Single olivocochlear neurons in the guinea pig. I. Binaural facilitation of responses to high-level noise (1998) J Neurophysiol, 79, pp. 3077-3087
  • Brownell, W.E., Bader, C.R., Bertrand, D., de Ribaupierre, Y., Evoked mechanical responses of isolated cochlear outer hair cells (1985) Science, 227, pp. 194-196
  • Bruce, L.L., Christensen, M.A., Warr, W.B., Postnatal development of efferent synapses in the rat cochlea (2000) J Comp Neurol, 423, pp. 532-548
  • Chen, C., Blitz, D.M., Regehr, W.G., Contributions of receptor desensitization and saturation to plasticity at the retinogeniculate synapse (2002) Neuron, 33, pp. 779-788
  • Cooper, N.P., Guinan Jr., J.J., Efferent-mediated control of basilar membrane motion (2006) J Physiol, 576, pp. 49-54
  • Debanne, D., Guérineau, N.C., Gähwiler, B.H., Thompson, S.M., Pairedpulse facilitation and depression at unitary synapses in rat hippocampus: Quantal fluctuation affects subsequent release (1996) J Physiol, 491, pp. 163-176
  • del Castillo, J., Katz, B., Quantal components of the end-plate potential (1954) J Physiol, 124, pp. 560-573
  • del Castillo, J., Katz, B., Statistical factors involved in neuromuscular facilitation and depression (1954) J Physiol, 124, pp. 574-585
  • Delano, P.H., Elgueda, D., Hamame, C.M., Robles, L., Selective attention to visual stimuli reduces cochlear sensitivity in chinchillas (2007) J Neurosci, 27, pp. 4146-4153
  • Dodge Jr., F.A., Rahamimoff, R., Co-operative action a calcium ions in transmitter release at the neuromuscular junction (1967) J Physiol, 193, pp. 419-432
  • Dolan, D.F., Nuttall, A.L., Masked cochlear whole-nerve response intensity functions altered by electrical stimulation of the crossed olivocochlear bundle (1988) J Acoust Soc Am, 83, pp. 1081-1086
  • Dulon, D., Lenoir, M., Cholinergic responses in developing outer hair cells of the rat cochlea (1996) Eur J Neurosci, 8, pp. 1945-1952
  • Eccles, J.C., Katz, B., Kuffler, S.W., Nature of the "endplate potential" in curarized muscle (1941) J Neurophysiol, 4, pp. 362-387
  • Elgoyhen, A.B., Fuchs, P.A., Efferent innervation and function (2010) The Oxford Handbook of Auditory Science: The Ear (Fuchs PA, Ed), pp. 283-306. , Oxford: Oxford UP
  • Elgoyhen, A.B., Vetter, D.E., Katz, E., Rothlin, C.V., Heinemann, S.F., Boulter J (2001) alpha10: A determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells Proc Natl Acad Sci U S A, 98, pp. 3501-3506
  • Evans, M.G., Acetylcholine activates two currents in guinea-pig outer hair cells (1996) J Physiol, 491, pp. 563-578
  • Flock, A., Russell, I.J., The post-synaptic action of efferent fibres in the lateral line organ of the burbot Lota lota (1973) J Physiol, 235, pp. 591-605
  • Fortune, E.S., Rose, G.J., Short-term synaptic plasticity as a temporal filter (2001) Trends Neurosci, 24, pp. 381-385
  • Fuchs, P.A., Murrow, B.W., Cholinergic inhibition of short (outer) hair cells of the chick's cochlea (1992) J Neurosci, 12, pp. 800-809
  • Fuchs, P.A., Glowatzki, E., Moser, T., The afferent synapse of cochlear hair cells (2003) Curr Opin Neurobiol, 13, pp. 452-458
  • Galambos, R., Suppression of auditory nerve activity by stimulation of efferent fibers to cochlea (1956) J Neurophysiol, 19, pp. 424-437
  • Galvez, A., Gimenez-Gallego, G., Reuben, J.P., Roy-Contancin, L., Feigenbaum, P., Kaczorowski, G.J., Garcia, M.L., Purification and characterization of a unique, potent, peptidyl probe for the high conductance calciumactivated potassium channel from venom of the scorpion Buthus tamulus (1990) J Biol Chem, 265, pp. 11083-11090
  • Gifford, M.L., Guinan Jr., J.J., Effects of electrical stimulation of medial olivocochlear neurons on ipsilateral and contralateral cochlear responses (1987) Hear Res, 29, pp. 179-194
  • Glowatzki, E., Fuchs, P.A., Cholinergic synaptic inhibition of inner hair cells in the neonatal mammalian cochlea (2000) Science, 288, pp. 2366-2368
  • Gómez-Casati, M.E., Fuchs, P.A., Elgoyhen, A.B., Katz, E., Biophysical and pharmacological characterization of nicotinic cholinergic receptors in rat cochlear inner hair cells (2005) J Physiol, 566, pp. 103-118
  • Goutman, J.D., Fuchs, P.A., Glowatzki, E., Facilitating efferent inhibition of inner hair cells in the cochlea of the neonatal rat (2005) J Physiol, 566, pp. 49-59
  • Guinan Jr., J.J., (1996) Physiology of Olivocochlear Efferents, pp. 435-502. , The cochlea (Dallos P, Popper AN, Fay RR, eds, New York: Springer
  • Housley, G.D., Ashmore, J.F., Direct measurement of the action of acetylcholine on isolated outer hair cells of the guinea pig cochlea (1991) Proc Biol Sci, 244, pp. 161-167
  • Hudspeth, A.J., How hearing happens (1997) Neuron, 19, pp. 947-950
  • Jonas, P., Major, G., Sakmann, B., Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus (1993) J Physiol, 472, pp. 615-663
  • Katz, B., Miledi, R., The role of calcium in neuromuscular facilitation (1968) J Physiol, 195, pp. 481-492
  • Katz, E., Elgoyhen, A.B., Gómez-Casati, M.E., Knipper, M., Vetter, D.E., Fuchs, P.A., Glowatzki, E., Developmental regulation of nicotinic synapses on cochlear inner hair cells (2004) J Neurosci, 24, pp. 7814-7820
  • Kawase, T., Delgutte, B., Liberman, M.C., Antimasking effects of the olivocochlear reflex. II. Enhancement of auditory-nerve response to masked tones (1993) J Neurophysiol, 70, pp. 2533-2549
  • Klyachko, V.A., Stevens, C.F., Temperature-dependent shift of balance among the components of short-term plasticity in hippocampal synapses (2006) J Neurosci, 26, pp. 6945-6957
  • Köhler, M., Hirschberg, B., Bond, C.T., Kinzie, J.M., Marrion, N.V., Maylie, J., Adelman, J.P., Small-conductance, calcium-activated potassium channels from mammalian brain (1996) Science, 273, pp. 1709-1714
  • Lenoir, M., Shnerson, A., Pujol, R., Cochlear receptor development in the rat with emphasis on synaptogenesis (1980) Anat Embryol (Berl), 160, pp. 253-262
  • Liberman, M.C., Brown, M.C., Physiology and anatomy of single olivocochlear neurons in the cat (1986) Hear Res, 24, pp. 17-36
  • Lioudyno, M., Hiel, H., Kong, J.H., Katz, E., Waldman, E., Parameshwaran-Iyer, S., Glowatzki, E., Fuchs, P.A., A "synaptoplasmic cistern" mediates rapid inhibition of cochlear hair cells (2004) J Neurosci, 24, pp. 11160-11164
  • Lisman, J.E., Bursts as a unit of neural information: Making unreliable synapses reliable (1997) Trends Neurosci, 20, pp. 38-43
  • Maison, S., Micheyl, C., Collet, L., Influence of focused auditory attention on cochlear activity in humans (2001) Psychophysiology, 38, pp. 35-40
  • Maison, S.F., Adams, J.C., Liberman, M.C., Olivocochlear innervation in the mouse: Immunocytochemical maps, crossed versus uncrossed contributions, and transmitter colocalization (2003) J Comp Neurol, 455, pp. 406-416
  • Mallart, A., Martin, A.R., An analysis of facilitation of transmitter release at the neuromuscular junction of the frog (1967) J Physiol, 193, pp. 679-694
  • Marcotti, W., Johnson, S.L., Kros, C.J., A transiently expressed SK current sustains and modulates action potential activity in immature mouse inner hair cells (2004) J Physiol, 560, pp. 691-708
  • Moss, S.J., Smart, T.G., Constructing inhibitory synapses (2001) Nat Rev Neurosci, 2, pp. 240-250
  • Mountain, D.C., Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics (1980) Science, 210, pp. 71-72
  • Murthy, V.N., Sejnowski, T.J., Stevens, C.F., Heterogeneous release properties of visualized individual hippocampal synapses (1997) Neuron, 18, pp. 599-612
  • Nadol Jr., J.B., Comparative anatomy of the cochlea and auditory nerve in mammals (1988) Hear Res, 34, pp. 253-266
  • Nenov, A.P., Norris, C., Bobbin, R.P., Acetylcholine response in guinea pig outer hair cells. I. Properties of the response (1996) Hear Res, 101, pp. 132-148
  • Nenov, A.P., Norris, C., Bobbin, R.P., Acetylcholine response in guinea pig outer hair cells. II. Activation of a small conductance Ca 2+-activated K + channel (1996) Hear Res, 101, pp. 149-172
  • Oatman, L.C., Effects of visual attention on the intensity of auditory evoked potentials (1976) Exp Neurol, 51, pp. 41-53
  • Oliver, D., Klöcker, N., Schuck, J., Baukrowitz, T., Ruppersberg, J.P., Fakler, B., Gating of Ca 2+-activated K + channels controls fast inhibitory synaptic transmission at auditory outer hair cells (2000) Neuron, 26, pp. 595-601
  • Pujol, R., Lavigne-Rebillard, M., Lenoir, M., Development of sensory and neural structures in the mammalian cochlea (1998) Development of the Auditory System, pp. 146-192. , (Rubel EW, Popper AN, Fay RR, eds, New York: Springer
  • Rajan, R., Centrifugal pathways protect hearing sensitivity at the cochlea in noisy environments that exacerbate the damage induced by loud sound (2000) J Neurosci, 20, pp. 6684-6693
  • Robertson, D., Centrifugal control in mammalian hearing (2009) Clin Exp Pharmacol Physiol, 36, pp. 603-611
  • Robertson, D., Gummer, M., Physiological and morphological characterization of efferent neurones in the guinea pig cochlea (1985) Hear Res, 20, pp. 63-77
  • Robinson, B.L., McAlpine, D., Gain control mechanisms in the auditory pathway (2009) Curr Opin Neurobiol, 19, pp. 402-407
  • Rothlin, C.V., Katz, E., Verbitsky, M., Elgoyhen, A.B., The alpha9 nicotinic acetylcholine receptor shares pharmacological properties with type A gamma-aminobutyric acid, glycine, and type 3 serotonin receptors (1999) Mol Pharmacol, 55, pp. 248-254
  • Rothlin, C.V., Lioudyno, M.I., Silbering, A.F., Plazas, P.V., Casati, M.E., Katz, E., Guth, P.S., Elgoyhen, A.B., Direct interaction of serotonin type 3 receptor ligands with recombinant and native alpha 9 alpha 10-containing nicotinic cholinergic receptors (2003) Mol Pharmacol, 63, pp. 1067-1074
  • Rüttiger, L., Sausbier, M., Zimmermann, U., Winter, H., Braig, C., Engel, J., Knirsch, M., Knipper, M., Deletion of the Ca 2+-activated potassium (BK) alpha-subunit but not the BKbeta1- subunit leads to progressive hearing loss (2004) Proc Natl Acad Sci U S A, 101, pp. 12922-12927
  • Schikorski, T., Stevens, C.F., Quantitative ultrastructural analysis of hippocampal excitatory synapses (1997) J Neurosci, 17, pp. 5858-5867
  • Sgard, F., Charpantier, E., Bertrand, S., Walker, N., Caput, D., Graham, D., Bertrand, D., Besnard, F., A novel human nicotinic receptor subunit, alpha10, that confers functionality to the alpha9-subunit (2002) Mol Pharmacol, 61, pp. 150-159
  • Simmons, D.D., Development of the inner ear efferent system across vertebrate species (2002) J Neurobiol, 53, pp. 228-250
  • Simmons, D.D., Mansdorf, N.B., Kim, J.H., Olivocochlear innervation of inner and outer hair cells during postnatal maturation: Evidence for a waiting period (1996) J Comp Neurol, 370, pp. 551-562
  • Singer, J.H., Glowatzki, E., Moser, T., Strowbridge, B.W., Bhandawat, V., Sampath, A.P., Functional properties of synaptic transmission in primary sense organs (2009) J Neurosci, 29, pp. 12802-12806
  • Tan, M.N., Robertson, D., Hammond, G.R., Separate contributions of enhanced and suppressed sensitivity to the auditory attentional filter (2008) Hear Res, 241, pp. 18-25
  • Taranda, J., Maison, S.F., Ballestero, J.A., Katz, E., Savino, J., Vetter, D.E., Boulter, J., Elgoyhen, A.B., A point mutation in the hair cell nicotinic cholinergic receptor prolongs cochlear inhibition and enhances noise protection (2009) PLoS Biol, 7, pp. e18
  • Vetter, D.E., Katz, E., Maison, S.F., Taranda, J., Turcan, S., Ballestero, J., Liberman, M.C., Boulter, J., The alpha10 nicotinic acetylcholine receptor subunit is required for normal synaptic function and integrity of the olivocochlear system (2007) Proc Natl Acad Sci U S A, 104, pp. 20594-20599
  • Warr, W.B., Boche, J.E., Diversity of axonal ramifications belonging to single lateral and medial olivocochlear neurons (2003) Exp Brain Res, 153, pp. 499-513
  • Weisstaub, N., Vetter, D.E., Elgoyhen, A.B., Katz, E., The alpha9alpha10 nicotinic acetylcholine receptor is permeable to and is modulated by divalent cations (2002) Hear Res, 167, pp. 122-135
  • Wersinger, E., McLean, W.J., Fuchs, P.A., Pyott, S.J., BK channels mediate cholinergic inhibition of high frequency cochlear hair cells (2010) PLoS One, 5, pp. e13836
  • Wiederhold, M.L., Kiang, N.Y., Effects of electric stimulation of the crossed olivocochlear bundle on single auditory-nerve fibers in the cat (1970) J Acoust Soc Am, 48, pp. 950-965
  • Wilson, J.L., Henson, M.M., Henson Jr., O.W., Course and distribution of efferent fibers in the cochlea of the mouse (1991) Hear Res, 55, pp. 98-108
  • Winslow, R.L., Sachs, M.B., Single-tone intensity discrimination based on auditory-nerve rate responses in backgrounds of quiet, noise, and with stimulation of the crossed olivocochlear bundle (1988) Hear Res, 35, pp. 165-189
  • Xu-Friedman, M.A., Regehr, W.G., Structural contributions to shortterm synaptic plasticity (2004) Physiol Rev, 84, pp. 69-85
  • Yoshida, N., Shigemoto, T., Sugai, T., Ohmori, H., The role of inositol trisphosphate on ACh-induced outward currents in bullfrog saccular hair cells (1994) Brain Res, 644, pp. 90-100
  • Pyott, S., Ballestero, J., Katz, E., Ca 2+ and Ca 2+- activated K + channels that support and modulate transmitter release at the olivocochlear efferent-inner hair cell synapse (2010) J Neurosci, 30, pp. 12157-12167
  • Zucker, R.S., Regehr, W.G., Short-term synaptic plasticity (2002) Annu Rev Physiol, 64, pp. 355-405

Citas:

---------- APA ----------
Ballestero, J., de San Martín, J.Z., Goutman, J., Elgoyhen, A.B., Fuchs, P.A. & Katz, E. (2011) . Short-term synaptic plasticity regulates the level of olivocochlear inhibition to auditory hair cells. Journal of Neuroscience, 31(41), 14763-14774.
http://dx.doi.org/10.1523/JNEUROSCI.6788-10.2011
---------- CHICAGO ----------
Ballestero, J., de San Martín, J.Z., Goutman, J., Elgoyhen, A.B., Fuchs, P.A., Katz, E. "Short-term synaptic plasticity regulates the level of olivocochlear inhibition to auditory hair cells" . Journal of Neuroscience 31, no. 41 (2011) : 14763-14774.
http://dx.doi.org/10.1523/JNEUROSCI.6788-10.2011
---------- MLA ----------
Ballestero, J., de San Martín, J.Z., Goutman, J., Elgoyhen, A.B., Fuchs, P.A., Katz, E. "Short-term synaptic plasticity regulates the level of olivocochlear inhibition to auditory hair cells" . Journal of Neuroscience, vol. 31, no. 41, 2011, pp. 14763-14774.
http://dx.doi.org/10.1523/JNEUROSCI.6788-10.2011
---------- VANCOUVER ----------
Ballestero, J., de San Martín, J.Z., Goutman, J., Elgoyhen, A.B., Fuchs, P.A., Katz, E. Short-term synaptic plasticity regulates the level of olivocochlear inhibition to auditory hair cells. J. Neurosci. 2011;31(41):14763-14774.
http://dx.doi.org/10.1523/JNEUROSCI.6788-10.2011