Artículo

El editor permite incluir el artículo en su versión final en nuestro repositorio
Consulte la política de Acceso Abierto del editor

Abstract:

Electrical transmission among neurons has been considered a mechanism to synchronize neuronal activity, and rectification provides a mechanism to confine the flow of signals among the connected neurons. The question is how this type of transmission operates within complex neuronal networks. In the leech, the neurons located in position 151 of the midbody ganglion map are connected to virtually every motoneuron via rectifying electrical synapses that pass negative current to the motoneurons. These are nonspiking neurons, and here we have labeled them NS neurons. The goal of this investigation has been to assess their role in regulating motor activity and how rectifying electrical synapses contribute to the function of motor networks. The coupling between NS neurons and motoneurons was voltage sensitive: it increased as motoneurons were depolarized. In addition, excitation of motoneurons evoked hyperpolarizing synaptic responses in NS neurons, the amplitude of which depended on the membrane potential of the latter and on the motoneuron firing frequency. This hyperpolarization was mediated by chemical transmission through an interneuronal layer that spanned the nerve cord. These interactions established a feedback loop between NS and motoneurons that was regulated by the membrane potential of NS. This mechanism was responsible for the uncoupling between otherwise electrically coupled motoneurons. In this way, the NS neurons can act as "electrical neuromodulators," modifying the interaction of other neurons, depending on the activity of the system as a whole.

Registro:

Documento: Artículo
Título:Coactivation of motoneurons regulated by a network combining electrical and chemical synapses
Autor:Rela, L.; Szczupak, L.
Filiación:Departamento de Fisiología, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
1000 Capital Federal, 1428 Buenos Aires, Argentina
Palabras clave:Electrical rectification; Gap junctions; Leech; Motor control; Nonspiking; Rectifying electrical synapses; animal cell; animal tissue; article; cell synchronization; controlled study; depolarization; excitatory junction potential; feedback system; ganglion; gap junction; hyperpolarization; interneuron; leech; membrane potential; molecular mechanics; motoneuron; nerve cell network; nerve conduction; nerve cord; neuromodulation; neurotransmission; nonhuman; polysynaptic reflex; priority journal; signal transduction; spike; synapse; Action Potentials; Animals; Electric Stimulation; Feedback; Ganglia, Invertebrate; Gap Junctions; Leeches; Membrane Potentials; Motor Neurons; Nerve Net; Neural Inhibition; Neural Pathways; Synapses; Synaptic Transmission
Año:2003
Volumen:23
Número:2
Página de inicio:682
Página de fin:692
Título revista:Journal of Neuroscience
Título revista abreviado:J. Neurosci.
ISSN:02706474
CODEN:JNRSD
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_02706474_v23_n2_p682_Rela.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02706474_v23_n2_p682_Rela

Referencias:

  • Acklin, S.E., Electrical properties and anion permeability of doubly rectifying junctions in the leech central nervous system (1988) J Exp Biol, 137, pp. 1-11
  • Alvarez, V.A., Chow, C.C., Van Bockstaele, E.J., Williams, J.T., Frequencydependent synchrony in locus ceruleus: Role of electrotonic coupling (2002) Proc Natl Acad Sci USA, 99, pp. 4032-4036
  • Beierlein, M., Gibson, J.R., Connors, B.W., A network of electrically coupled interneurons drives synchronized inhibition in neocortex (2000) Nat Neurosci, 3, pp. 904-910
  • Bennett, M.V., Gap junctions as electrical synapses (1997) J Neurocytol, 26, pp. 349-366
  • Bennett, M.V., Barrio, L.C., Bargiello, T.A., Spray, D.C., Hertzberg, E., Saez, J.C., Gap junctions: New tools, new answers, new questions (1991) Neuron, 6, pp. 305-320
  • Burrows, M., Local circuits for the control of leg movements in an insect (1992) Trends Neurosci, 15, pp. 226-232
  • De Miguel, F.F., Vargas-Caballero, M., Garcia-Perez, E., Spread of synaptic potentials through electrical synapses in Retzius neurones of the leech (2001) J Exp Biol, 204, pp. 3241-3250
  • Dermietzel, R., Gap junction wiring: A "new" principle in cell-to-cell communication in the nervous system? (1998) Brain Res Brain Res Rev, 26, pp. 176-183
  • Edwards, D.H., Yeh, S.R., Krasne, F.B., Neuronal coincidence detection by voltage-sensitive electrical synapses (1998) Proc Natl Acad Sci USA, 95, pp. 7145-7150
  • Furshpan, E.J., Potter, D.D., Transmission at the giant motor synapses of the crayfish (1959) J Physiol (Lond), 145, pp. 289-325
  • Galarreta, M., Hestrin, S., A network of fast-spiking cells in the neocortex connected by electrical synapses (1999) Nature, 402, pp. 72-75
  • Galarreta, M., Hestrin, S., Electrical synapses between GABA-releasing interneurons (2001) Nat Rev Neurosci, 2, pp. 425-433
  • Galarreta, M., Hestrin, S., Spike transmission and synchrony detection in networks of GABAergic interneurons (2001) Science, 292, pp. 2295-2299
  • Gibson, J.R., Beierlein, M., Connors, B.W., Two networks of electrically coupled inhibitory neurons in neocortex (1999) Nature, 402, pp. 75-79
  • Granzow, B., Friesen, W.O., Kristan, W.B., Physiological and morphological analysis of synaptic transmission between leech motor neurons (1985) J Neurosci, 5, pp. 2035-2050
  • Graubard, K., Hartline, D.K., Full-wave rectification from a mixed electrical-chemical synapse (1987) Science, 237, pp. 535-537
  • Hagiwara, S., Morita, H., Electronic transmission between two nerve cells in leech ganglion (1962) J Neurophysiol, 25, pp. 721-731
  • Iscla, I., Arini, P.D., Szczupak, L., Differential channeling of sensory stimuli onto a motor neuron in the leech (1999) J Comp Physiol, 184, pp. 233-241
  • Ishimaru, M., Williams, J.T., Synchronous activity in locus coeruleus results from dendritic interactions in pericoerulear regions (1996) J Neurosci, 16, pp. 5196-5204
  • Kiehn, O., Tresch, M.C., Gap junctions and motor behavior (2002) Trends Neurosci, 25, pp. 108-115
  • Koos, T., Tepper, J.M., Inhibitory control of neostriatal projection neurons by GABAergic interneurons (1999) Nat Neurosci, 2, pp. 467-472
  • Landisman, C.E., Long, M.A., Beierlein, M., Deans, M.R., Paul, D.L., Connors, B.W., Electrical synapses in the thalamic reticular nucleus (2002) J Neurosci, 22, pp. 1002-1009
  • Mann-Metzer, P., Yarom, Y., Electrotonic coupling interacts with intrinsic properties to generate synchronized activity in cerebellar networks of inhibitory interneurons (1999) J Neurosci, 19, pp. 3298-3306
  • Marin-Burgin, A., Szczupak, L., A non-spiking interneuron regulates the sensory input onto the serotonergic neurons in the leech (1998) Soc Neurosci Abstr, 645, p. 3
  • Marin-Burgin, A., Szczupak, L., Processing of sensory signals by a nonspiking neuron in the leech (2000) J Comp Physiol [A], 186, pp. 989-997
  • Muller, K.J., Scott, S.A., Transmission at a direct electrical connexion mediated by an interneurone in the leech (1981) J Physiol (Lond), 311, pp. 565-583
  • Muller, K.J., Nicholls, J.G., Stent, G.S., (1981) Neurobiology of the Leech, , Cold Spring Harbor, NY: Cold Spring Harbor Laboratory
  • Nicholls, J.G., Baylor, D.A., Specific modalities and receptive fields of sensory neurons in CNS of the leech (1968) J Neurophysiol, 31, pp. 740-756
  • Nicholls, J.G., Purves, D., Monosynaptic chemical and electrical connexions between sensory and motor cells in the central nervous system of the leech (1970) J Physiol (Lond), 209, pp. 647-667
  • Oh, S., Rubin, J.B., Bennett, M.V., Verselis, V.K., Bargiello, T.A., Molecular determinants of electrical rectification of single channel conductance in gap junctions formed by connexins 26 and 32 (1999) J Gen Physiol, 114, pp. 339-364
  • Peinado, A., Yuste, R., Katz, L.C., Extensive dye coupling between rat neocortical neurons during the period of circuit formation (1993) Neuron, 10, pp. 103-114
  • Schmitz, D., Schuchmann, S., Fisahn, A., Draguhn, A., Buhl, E.H., Petrasch-Parwez, E., Dermietzel, R., Traub, R.D., Axo-axonal coupling a novel mechanism for ultrafast neuronal communication (2001) Neuron, 31, pp. 831-840
  • Shaw, B.K., Kristan, W.B., The whole-body shortening reflex of the medicinal leech: Motor pattern, sensory basis, and interneuronal pathways (1995) J Comp Physiol [A], 177, pp. 667-681
  • Stuart, A.E., Physiological and morphological properties of motoneurones in the central nervous system of the leech (1970) J Physiol (Lond), 209, pp. 627-646
  • Szczupak, L., Kristan, W.B., Widespread mechanosensory activation of the serotonergic system of the medicinal leech (1995) J Neurophysiol, 74, pp. 2614-2623
  • Tamás, G., Buhl, E.H., Lörincz, A., Somogyi, P., Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons (2000) Nat Neurosci, 3, pp. 366-371
  • Verselis, V.K., Ginter, C.S., Bargiello, T.A., Opposite voltage gating polarities of two closely related connexins (1994) Nature, 368, pp. 348-351
  • Wadepuhl, M., A morpho- and physiologically uncommon neuron in the leech CNS (1987) Naturwissenschaften, 74, pp. 43-45
  • Wadepuhl, M., Depression of excitatory motoneurones by a single neurone in the leech central nervous system (1989) J Exp Biol, 143, pp. 509-527
  • Wittenberg, G., Kristan, W.B., Analysis and modeling of the multisegmental coordination of shortening behavior in the medicinal leech. I. Motor output pattern (1992) J Neurophysiol, 68, pp. 1683-1707

Citas:

---------- APA ----------
Rela, L. & Szczupak, L. (2003) . Coactivation of motoneurons regulated by a network combining electrical and chemical synapses. Journal of Neuroscience, 23(2), 682-692.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02706474_v23_n2_p682_Rela [ ]
---------- CHICAGO ----------
Rela, L., Szczupak, L. "Coactivation of motoneurons regulated by a network combining electrical and chemical synapses" . Journal of Neuroscience 23, no. 2 (2003) : 682-692.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02706474_v23_n2_p682_Rela [ ]
---------- MLA ----------
Rela, L., Szczupak, L. "Coactivation of motoneurons regulated by a network combining electrical and chemical synapses" . Journal of Neuroscience, vol. 23, no. 2, 2003, pp. 682-692.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02706474_v23_n2_p682_Rela [ ]
---------- VANCOUVER ----------
Rela, L., Szczupak, L. Coactivation of motoneurons regulated by a network combining electrical and chemical synapses. J. Neurosci. 2003;23(2):682-692.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02706474_v23_n2_p682_Rela [ ]