Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In order to assess how triatomines (Hemiptera, Reduviidae), Chagas disease vectors, are distributed through Latin America, we analysed the relationship between the ecological niche and the limits of the physiological thermal niche in seven species of triatomines. We combined two methodological approaches: species distribution models, and physiological tolerances. First, we modelled the ecological niche and identified the most important abiotic factor for their distribution. Then, thermal tolerance limits were analysed by measuring maximum and minimum critical temperatures, upper lethal temperature, and ‘chill-coma recovery time’. Finally, we used phylogenetic independent contrasts to analyse the link between limiting factors and the thermal tolerance range for the assessment of ecological hypotheses that provide a different outlook for the geo-epidemiology of Chagas disease. In triatomines, thermo-tolerance range increases with increasing latitude mainly due to better cold tolerances, suggesting an effect of thermal selection. In turn, physiological analyses show that species reaching southernmost areas have a higher thermo-tolerance than those with tropical distributions, denoting that thermo-tolerance is limiting the southern distribution. Understanding the latitudinal range along its physiological limits of disease vectors may prove useful to test ecological hypotheses and improve strategies and efficiency of vector control at the local and regional levels. © 2017 The Royal Entomological Society

Registro:

Documento: Artículo
Título:Ecological and physiological thermal niches to understand distribution of Chagas disease vectors in Latin America
Autor:de La Vega, G.J.; Schilman, P.E.
Filiación:Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental/Laboratorio de Ecofisiología de Insectos, Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET – Universidad de Buenos Aires, Buenos Aires, Argentina
Grupo de Ecología de Poblaciones de Insectos (GEPI), INTA EEA Bariloche, Argentina
Palabras clave:CTmax; CTmin; latitudinal variation; species distribution models; thermo-tolerances; triatomines; abiotic factor; assessment method; disease vector; ecological approach; ecological modeling; epidemiology; insect; latitude; niche; parasitic disease; physiology; spatial distribution; temperature tolerance; Article; Chagas disease; chill coma recovery time; clinical assessment; cold tolerance; convalescence; disease carrier; ecological niche; environmental parameters; environmental temperature; epidemiological data; geographic distribution; heat tolerance; Hemiptera; human; latitude; molecular phylogeny; nonhuman; physiological process; Rhodnius prolixus; South and Central America; species distribution; Triatoma delpontei; Triatoma dimidiata; Triatoma infestans; Triatoma patagonica; Triatoma sordida; Triatoma vitticeps; upper lethal temperature; vector control; animal; animal dispersal; Chagas disease; ecosystem; insect vector; physiology; Reduviidae; transmission; Latin America; Hemiptera; Reduviidae; Animal Distribution; Animals; Chagas Disease; Ecosystem; Insect Vectors; Latin America; Reduviidae; Thermotolerance
Año:2018
Volumen:32
Número:1
Página de inicio:1
Página de fin:13
DOI: http://dx.doi.org/10.1111/mve.12262
Título revista:Medical and Veterinary Entomology
Título revista abreviado:Med. Vet. Entomol.
ISSN:0269283X
CODEN:MVENE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0269283X_v32_n1_p1_deLaVega

Referencias:

  • Addo-Bediako, A., Chown, S.L., Gaston, K.J., Thermal tolerance, climatic variability and latitude (2000) Proceedings of the Royal Society of London, Series B: Biological Sciences, 267, pp. 739-745
  • Aguirre-Gutiérrez, J., Carvalheiro, L.G., Polce, C., Fit-for-purpose: species distribution model performance depends on evaluation criteria–Dutch hoverflies as a case study (2013) PLoS ONE, 8
  • Andersen, J.L., Manenti, T., Sørensen, J.G., MacMillan, H.A., Loeschcke, V., Overgaard, J., How to assess Drosophila cold tolerance: chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits (2015) Functional Ecology, 29, pp. 55-65
  • Angilletta, M., (2009) Thermal Adaptation: A Theoretical and Empirical Synthesis, , Oxford University Press, New York, NY
  • Araújo, M., Ferri-Yáñez, F., Bozinovic, F., Marquet, P., Valladares, F., Chown, S., Heat freezes niche evolution (2013) Ecology Letters, 16, pp. 1206-1219
  • Blaksley, J., Carcavallo, R.U., La enfermedad de Chagas-Mazza en la Argentina (1968) Ministerio de Bienestar Social, , &, Secretaria de Estado de Salud Pública, Buenos Aires
  • Buckley, L.B., Urban, M.C., Angilletta, M.J., Crozier, L.G., Rissler, L.J., Sears, M.W., Can mechanism inform species' distribution models? (2010) Ecology Letters, 13, pp. 1041-1054
  • Calosi, P., Bilton, D., Spicer, J., Votier, S., Atfield, A., What determines a species' geographical range? Thermal biology and latitudinal range size relationships in European diving beetles (Coleoptera: Dytiscidae) (2010) Journal of Animal Ecology, 79, pp. 194-204
  • Carcavallo, R., Curto de Casas, S., Sherlock, I., Geographical distribution and alti-latitudinal dispersion (1999) Atlas of Chagas' Disease Vectors in the Americas, pp. 747-792. , (ed. by, R.U. Carcavallo, Editorial Fiocruz, Rio de Janeiro
  • Chown, S.L., Nicolson, S.W., (2004) Insect Physiological Ecology Mechanisms and Pattern, , &, Oxford University Press, Oxford
  • Cioffi, R., Moody, A.J., Millán, A., Billington, R.A., Bilton, D.T., Physiological niche and geographical range in European diving beetles (Coleoptera: Dytiscidae) (2016) Biology Letters, 12, p. 20160130
  • Dumonteil, E., Gourbière, S., Barrera-Pérez, M., Geographic distribution of Triatoma dimidiata and transmission dynamics of Trypanosoma cruzi in the Yucatan peninsula of Mexico (2002) The American Journal of Tropical Medicine and Hygiene, 67, pp. 176-183
  • Elith, J., Graham, C.H., Anderson, R.P., Novel methods improve prediction of species' distributions from occurrence data (2006) Ecography, 29, pp. 129-151
  • Elith, J., Kearney, M., Phillips, S., The art of modelling range-shifting species (2010) Methods in Ecology and Evolution, 1, pp. 330-342
  • Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E., Yates, C.J., A statistical explanation of MaxEnt for ecologists (2011) Diversity and Distributions, 17, pp. 43-57
  • Escobar, L.E., Romero-Alvarez, D., Leon, R., Declining prevalence of disease vectors under climate change (2016) Scientific Reports, 6, pp. 1-8
  • Evans, T.G., Diamond, S.E., Kelly, M.W., Mechanistic species distribution modelling as a link between physiology and conservation (2015) Conservation Physiology, 3, p. cov056
  • Fergnani, P.N., Ruggiero, A., Ceccarelli, S., Menu, F., Rabinovich, J., Large-scale patterns in morphological diversity and species assemblages in Neotropical Triatominae (Heteroptera: Reduviidae) (2013) Memórias do Instituto Oswaldo Cruz, 108, pp. 997-1008
  • García-Robledo, C., Kuprewicz, E.K., Staines, C.L., Erwin, T.L., Kress, W.J., Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction (2016) Proceedings of the National Academy of Sciences of the United States of America, 113, pp. 680-685
  • Gorla, D., Variables ambientales registradas por sensores remotos como indicadores de la distribución geográfica de Triatoma infestans (Heteroptera: Reduviidae) (2002) Ecología Austral, 12, pp. 117-127
  • Gorla, D., Schofield, C., Population dynamic of Triatoma infestans under natural climatic conditions in the Argentine Chaco (1989) Medical and Veterinary Entomology, 4, pp. 179-194
  • Gurgel-Gonçalves, R., Galvão, C., Costa, J., Townsend Peterson, A., Geographic distribution of Chagas disease vectors in Brazil based on Ecological Niche Modeling (2012) Journal of Tropical Medicine, 2012, p. 15. , https://doi.org/10.1155/2012/705326
  • Hijmans, R., Elith, J., (2013) Species Distribution Modeling with R Introduction, , https://cran.r-project.org/web/packages/dismo/vignettes/sdm.pdf, &, CRAN, [accessed on 1 June 2014]
  • Hill, M., Hoffmann, A., Macfadyen, S., Umina, P., Elith, J., Understanding niche shifts: using current and historical data to model the invasive redlegged earth mite, Halotydeus destructor (2012) Diversity and Distributions, 18, pp. 191-203
  • Hypsa, V., Tietz, D.F., Zrzavý, J., Rego, R.O.M., Galvao, C., Jurberg, J., Phylogeny and biogeography of Triatominae (Hemiptera: Reduviidae): molecular evidence of a New World origin of the Asiatic clade (2002) Molecular Phylogenetics and Evolution, 23, pp. 447-457
  • Jetz, W., Sekercioglu, C., Watson, J., Ecological correlates and conservation implications of overestimating species geographic ranges (2008) Conservation Biology, 22, pp. 110-119
  • Kearney, M., Porter, W., Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges (2009) Ecology Letters, 12, pp. 334-350
  • Kellermann, V., Overgaard, J., Hoffmann, A., Flojgaard, C., Svenning, J., Loeschcke, V., Upper thermal limits of Drosophila are linked to species distributions and strongly constrained phylogenetically (2012) Proceedings of the National Academy of Sciences of the United States of America, 109, pp. 16228-16233
  • Kitron, U., Landscape ecology and epidemiology of vector-borne diseases: tools for spatial analysis (1998) Journal of Medical Entomology, 35, pp. 435-445
  • Lent, H., Wygodzinsky, P., Revision of the Triatominae (Hemiptera, Reduvidae) and their signifiacnce of vector of Chagas disease (1979) Bulletin of the American Museum of Natural History, 163, pp. 123-520
  • Lighton, J.R.B., Turner, R.J., Thermolimit respirometry: an objective assessment of critical thermal maxima in two sympatric desert harvester ants, Pogonomyrmex rugosus and P. californicus (2004) Journal of Experimental Biology, 207, pp. 1903-1913
  • Lobo, J.M., Jiménez-Valverde, A., Real, R., AUC: a misleading measure of the performance of predictive distribution models (2008) Global Ecology and Biogeography, 17, pp. 145-151
  • MacMillan, H.A., Williams, C., Staples, J., Sinclair, B., Reestablishment of ion homeostasis during chill-coma recovery in the cricket Gryllus pennsylvanicus (2012) Proceedings of the National Academy of Sciences of the United States of America, 109, pp. 20750-20755
  • Martin, P., Lefebvre, M., Malaria and climate: sensitivity of malaria potential transmission to climate (1995) Ambio, 24, pp. 200-207
  • Medone, P., Ceccarelli, S., Parham, P.E., Figuera, A., Rabinovich, J.E., The impact of climate change on the geographical distribution of two vectors of Chagas disease: implications for the force of infection (2015) Philosophical transactions of the Royal Society of London, Series B, 370, p. 20130560
  • Moncayo, A., Chagas disease: Epidemiology and prospects for interruption of transmission in the Americas (1992) World Health Statistics Quarterly, 45, pp. 276-279
  • Patterson, J.S., Guhl, F., (2010) Geographical Distribution of Chagas Disease, , https://doi.org/10.1016/B978-0-12-384876-5.00005-8
  • (2013) A Language and Environment for Statistical Computing, , http://www.R-project.org, R Foundation for Statistical Computing, Vienna, [accessed on 1 May 2014]
  • Rodriguero, M.S., Gorla, D.E., Latitudinal gradient in species richness of the New World Triatominae (Reduviidae) (2004) Global Ecology and Biogeography, 13, pp. 75-84
  • Rolandi, C., Schilman, P.E., Linking global warning, metabolic rate of haematophagous vectors and the transmission of infectious diseases (2012) Frontiers in Physiology, 3, pp. 1-3
  • Rolandi, C., Iglesias, M.S., Schilman, P.E., Metabolism and water loss rate of the haematophagous insect Rhodnius prolixus: effect of starvation and temperature (2014) Journal of Experimental Biology, 217, pp. 4414-4422
  • Schilman, P.E., Lazzari, C.R., Temperature preference in Rhodnius prolixus, effects and possible consequences (2004) Acta Tropica, 90, pp. 115-122
  • Schofield, C.J., Jannin, J., Salvatella, R., The future of Chagas disease control (2006) Trends in Parasitology, 22, pp. 583-588
  • Schweiger, A.H., Beierkuhnlein, C., Scale dependence of temperature as an abiotic driver of species' distributions (2016) Global Ecology and Biogeography, 25, pp. 1013-1021
  • de Souza, R.C.M., Diotaiuti, L., Lorenzo, M.G., Gorla, D.E., Analysis of the geographical distribution of Triatoma vitticeps (Stål, 1859) based on data of species occurrence in Minas Gerais, Brazil (2010) Infection, Genetics and Evolution, 10, pp. 720-726
  • Spicer, J.I., Gaston, K.J., (1999) Physiological Diversity and Its Ecological Implications, , &, Blackwell, Oxford
  • Stevens, G., The latitudinal gradient in geographical range: how so many species coexist in the tropics (1989) The American Naturalist, 133, pp. 240-256
  • Sunday, J., Bates, A., Dulvy, N., Global analysis of thermal tolerance and latitude in ectotherms (2011) Proceedings of the Royal Society of London, Series B: Biological Sciences, 278, pp. 1823-1830
  • Sunday, J., Bates, A., Kearney, M., Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation (2014) Proceedings of the National Academy of Sciences of the United States of America, 111, pp. 5610-5615
  • Svenning, J., Normand, S., Kageyama, M., Glacial refugia of temperate trees in Europe: insights from species distribution modelling (2008) Journal of Ecology, 96, pp. 1117-1127
  • Terblanche, J.S., Klok, C.J., Krafsur, E.S., Chown, S.L., Phenotypic plasticity and geographic variation in thermal tolerance and water loss of the tsetse Glossina pallidipes (Diptera: Glossinidae): implications for distribution modelling (2006) American Journal of Tropical Medicine and Hygiene, 74, pp. 786-794
  • de la Vega, G.J., Medone, P., Ceccarelli, S., Rabinovich, J., Schilman, P.E., Geographical distribution, climatic variability and thermo-tolerance of Chagas disease vectors (2015) Ecography, 38, pp. 1-10
  • Waleckx, E., Gourbière, S., Dumonteil, E., Intrusive versus domiciliated triatomines and the challenge of adapting vector control practices against Chagas disease (2015) Memórias do Instituto Oswaldo Cruz, 110, pp. 324-338
  • Warren, M., Robertson, M., Greeff, J., A comparative approach to understanding factors limiting abundance patterns and distributions in a fig tree-fig wasp mutualism (2010) Ecography, 33, pp. 148-158
  • Wisnivesky-Colli, C., Vezzani, D., Pietrokovsky, S., Scurti, H., Iriarte, J., Ecological characteristics of Triatoma patagonica at the southern limit of its distribution (Chubut, Argentina) (2003) Memórias do Instituto Oswaldo Cruz, 98, pp. 1077-1081
  • Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., Smith, G.M., (2009) Mixed Effects Models and Extensions in Ecology with R, , &, Springer, New York, NY

Citas:

---------- APA ----------
de La Vega, G.J. & Schilman, P.E. (2018) . Ecological and physiological thermal niches to understand distribution of Chagas disease vectors in Latin America. Medical and Veterinary Entomology, 32(1), 1-13.
http://dx.doi.org/10.1111/mve.12262
---------- CHICAGO ----------
de La Vega, G.J., Schilman, P.E. "Ecological and physiological thermal niches to understand distribution of Chagas disease vectors in Latin America" . Medical and Veterinary Entomology 32, no. 1 (2018) : 1-13.
http://dx.doi.org/10.1111/mve.12262
---------- MLA ----------
de La Vega, G.J., Schilman, P.E. "Ecological and physiological thermal niches to understand distribution of Chagas disease vectors in Latin America" . Medical and Veterinary Entomology, vol. 32, no. 1, 2018, pp. 1-13.
http://dx.doi.org/10.1111/mve.12262
---------- VANCOUVER ----------
de La Vega, G.J., Schilman, P.E. Ecological and physiological thermal niches to understand distribution of Chagas disease vectors in Latin America. Med. Vet. Entomol. 2018;32(1):1-13.
http://dx.doi.org/10.1111/mve.12262