Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

BACKGROUND: Azo and anthraquinone dyes have been successfully decolorized using enzymatic and biomimetic homogeneous systems.1,2 Hematin, a horseradish peroxidase (HRP) biomimetic, immobilized on chitosan via glutaraldehyde coupling was able to decolorize Alizarin Red S and Orange II solutions. A Doehlert experimental design and response surface analysis was applied to determine conditions for optimal mass of catalyst and catalytic efficiency of the immobilization procedure. RESULTS: The catalysts with supported hematin showed 33% activity (relative to homogeneous hematin as 100%) in decolorization reactions. After six reuses the catalytic activity was maintained at 60% of the initial one. Hematin anchoring to chitosan without alteration of the iron-porphyrin ring was confirmed by ICP, FTIR and UV/visible spectrophotometric methods. In addition, the effect on hematin activity in the decolorization of aminopropyltriethoxysilane (APTS) as a 'spacer arm' between hematin-glutaraldehyde and chitosan was studied. CONCLUSIONS: An economical heterogeneous catalyst alternative to HRP has been obtained. The spacer arm improves the catalyst's performance with activities as high as 57% relative to homogeneous hematin. These results support the notion that the activity loss of supported hematin is caused by the restricted access to Fe of the bulky phenolic dyes. © 2014 Society of Chemical Industry.

Registro:

Documento: Artículo
Título:Modified chitosan as an economical support for hematin: Application in the decolorization of anthraquinone and azo dyes
Autor:Córdoba, A.; Magario, I.; Ferreira, M.L.
Filiación:Investigación y Desarrollo en Tecnología Química (IDTQ), Grupo Vinculado PLAPIQUI - CONICET. Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, X5016GCA, Ciudad Universitaria, Córdoba, Argentina
Planta Piloto de Ingeniería Química (PLAPIQUI), PLAPIQUI-UNS-CONICET, Universidad Nacional del Sur, Camino La Carrindanga Km 7, CC 717, 8000, Bahia Blanca, Provincia de Buenos Aires, Argentina
Palabras clave:Acid Orange II; Alizarin Red S; Chitosan; Peroxidase; Supported hematin; Alizarin; Aromatic compounds; Azo dyes; Biomimetics; Catalyst activity; Catalysts; Chitin; Chitosan; Citrus fruits; Ketones; Silicon compounds; Spectrophotometry; Surface analysis; Acid Orange II; Alizarin Red; Aminopropyltriethoxysilane; Heterogeneous catalyst; Peroxidase; Response surface analysis; Spectro-photometric method; Supported hematin; Catalyst supports; 3 aminopropyltriethoxysilane; anthraquinone; azo dye; chitosan; glutaraldehyde; hematin; iron; porphyrin; Article; atomic emission spectrometry; catalyst; catalytic efficiency; chemical structure; decolorization; experimental design; infrared spectroscopy; response surface method; stereospecificity; ultraviolet spectrophotometry; Armoracia rusticana
Año:2015
Volumen:90
Número:9
Página de inicio:1665
Página de fin:1676
DOI: http://dx.doi.org/10.1002/jctb.4475
Título revista:Journal of Chemical Technology and Biotechnology
Título revista abreviado:J. Chem. Technol. Biotechnol.
ISSN:02682575
CODEN:JCTBD
CAS:3 aminopropyltriethoxysilane, 919-30-2; anthraquinone, 84-65-1; chitosan, 9012-76-4; glutaraldehyde, 111-30-8, 37245-61-7; hematin, 15489-90-4; iron, 14093-02-8, 53858-86-9, 7439-89-6; porphyrin, 24869-67-8
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02682575_v90_n9_p1665_Cordoba

Referencias:

  • Córdoba, A., Magario, I., Ferreira, M.L., Experimental design and mm2-pm6 molecular modelling of hematin as a peroxidase-like catalyst in alizarin red s degradation (2012) J Molec Catal A: Chem, 355, pp. 44-60
  • Córdoba, A., Magario, I., Ferreira, M.L., Evaluation of hematin catalyzed orange ii degradation as a potential alternative to horseradish peroxidase (2012) Int Biodeter Biodegrad, 73, pp. 60-72
  • Abadulla, E., Tzanov, T., Costa, S., Robra, K.H., Cavaco-Paulo, A., Gubitz, G.M., Decolorization and detoxification of textile dyes with a laccase from trametes hirsuta (2000) Appl Environ Microbiol, 66, pp. 3357-3362
  • Bandala, E.R., (2002), Tratamiento de agua residual proveniente de la industria textil mediante fotocatálisis solar, XXVIII Congreso Interamericano de Ingeniería Sanitaria y Ambiental, Cancún, México. 27-31 de Octubre; Nigam, P., Armour, G., Banat, I.M., Singh, D., Marchant, R., Physical removal of textile dyes from effluents and solid-state fermentation of dye-adsorbed agricultural residues (2000) Bioresource Technol, 72, pp. 219-226
  • Aspland, J.R., (1997) Textile Dyeing and Coloration, , American Association of Textile Chemists and Colorists
  • Liu, L., Zhang, J., Tan, Y., Jiang, Y., Hu, M., Li, S., Rapid decolorization of anthraquinone and triphenylmethane dye using chloroperoxidase: catalytic mechanism, analysis of products and degradation route (2014) Chem Eng J, 244, pp. 9-18
  • Reihmann, M., Ritter, H., Synthesis of phenol polymers using peroxidases (2006) Adv Poly Sci, 194, pp. 1-49
  • Dunford, H.B., (1999) Heme Peroxidases, , John Wiley, VCH, USA
  • Shakeri, M., Shoda, M., Efficient decolorization of an anthraquinone dye by recombinant dye-decolorizing peroxidase (rdyp) immobilized in silica-based mesocellular foam (2010) J Mol Catal B: Enzymatic, 62, pp. 277-281
  • Celebi, M., Arif Kaya, M., Altikatoglu, M., Yildirim, H., Enzymatic decolorization of anthraquinone and diazo dyes using horseradish peroxidase enzyme immobilized onto various polysulfone supports (2013) Appl Biochem Biotechnol, 171, pp. 716-730
  • Jiang, Y., Tang, W., Gao, J., Zhou, L., He, Y., Immobilization of horseradish peroxidase in phospholipid-templated titania and its applications in phenolic compounds and dye removal (2014) Enzyme Microbial Technol, 55, pp. 1-6
  • Yao, Y., Mao, Y., Huang, Q., Wang, L., Huang, Z., Lu, W., Enhanced decomposition of dyes by hemin-acf with significant improvement in ph tolerance and stability (2014) J Hazard Mater, 264, pp. 323-331
  • Gao, Y., Chen, J., Redox reaction of hemin-immobilized polyallylamine-polystyrene latex suspensions (2005) J Electroanalyt Chem, 578, pp. 129-136
  • Saidman, S., Rueda, E.H., Ferreira, M.L., Activity of free peroxidases, hematin, magnetite-supported peroxidases and magnetite-supported hematin in the aniline elimination from water-uv-vis analysis (2006) Biochem Eng J, 28, pp. 177-186
  • Pirillo, S., Rueda, E.H., Ferreira, M.L., Supported biocatalysts for alizarin and eriochrome blue black r degradation using hydrogen peroxide (2012) Chem Eng J, 204-206, pp. 65-71
  • Roberts, A.F., (1992) Chitin Chemistry, , The MacMillan Press
  • Doehlert, D., Uniform shell design (1970) Appl Statistics, 19, pp. 231-239
  • Gutierrez Pulido, H., De la Vara, S.R., (2008) Análisis y Diseño de Experimentos, , 2nd edn. Interamericana. M-H, editor D.F., Mexico
  • Ezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S., Escaleira, L.A., Response surface methodology (rsm) as a tool for optimization in analytical chemistry (2008) Talanta, 76, pp. 965-977
  • Murphy, T.E., Tsui, K.L., Allen, J.K., A review of robust design methods for multiple responses (2005) Res Eng Design, 15, pp. 201-215
  • Bartkowiak, A.W., Roberts, G.A.F., Investigation of sorbates for the determination of the fa values of chitin and chitosan by an adsorption technique (2007) Polish Chitin Society, Monograph XII
  • Migneault, I., Dartiguenave, C., Bertrand, M.J., Waldron, K.C., Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking (2004) BioTechniques, 37, pp. 790-802
  • Shlomo Margel, A.R., Synthesis and characterization of poly(glutaraldehyde). A potential reagent for protein immobilization and cell separation (1980) Macromolecules, 13, pp. 19-24
  • Bruice, T.C., Reactions of hydroperoxides with metallotetraphenylporphyrins in aqueous solutions (1991) Acct Chem Res, 24, pp. 243-249
  • Lindsay Smith, J.R., Lower, R.J., The mechanism of the reaction between t-butyl hydroperoxide and 5, 10, 15, 20-tetra(n-methyl-4-pyridyl)porphyrinatoiron(iii) pentachloride in aqueous solution (1991) J Chem Soc Perkin Trans, 2, pp. 31-39
  • Cunningham, I.D., Danks, T.N., Hay, J.N., Hamerton, I., Gunathilagan, S., Evidence for parallel destructive, and competitive epoxidation and dismutation pathways in metalloporphyrin-catalysed alkene oxidation by hydrogen peroxide (2001) Tetrahedron, 57, pp. 6847-6853
  • Stephenson, N.A., Bell, A.T., A study of the mechanism and kinetics of cyclooctene epoxidation catalyzed by iron(iii) tetrakispentafluorophenyl porphyrin (2005) J Am Chem Soc, 127, pp. 8635-8643
  • Pedroni, V., Pirillo, S., Rueda, E., Ferreira, M.L., Elimination of dyes from aqueous solutions using iron oxides and chitosan as adsorbents. A comparative study (2009) Quimica Nova, 32, pp. 1239-1244
  • Dunford, H.B., (1999) Heme Peroxidases, , John Wiley, VCH, USA
  • Nicell, J.A., Saadi, K.W., Buchanan, I.D., Phenol polymerization and precipitation by horseradish peroxidase enzyme and an additive (1995) Bioresource Technol, 54, pp. 5-16
  • Kapeluich, Y.L., Rubtsova, M.Y., Egorov, A.M., Enhanced chemiluminescence reaction applied to the study of horseradish peroxidase stability in the course of p-lodophenol oxidation (1997) J Luminescence, 12, pp. 299-308
  • Wagner, M., Nicell, J.A., Detoxification of phenolic solutions with horseradish peroxidase and hydrogen peroxide (2002) Water Res, 36, pp. 4041-4052
  • Cai Xialing, M.L., Horseradish peroxidase catalyzed free radical cannot free move in reaction solution (2009) J Biochem Technol, 4, pp. 92-95
  • (1972), US Government Printing Office, June. Retrieved 13 December 2012; Conley, R.T., (1979) Espectroscopia infrarroja, , 1° edicion española. Alhambra, Spain
  • ElKaoutit, M., Naranjo-Rodriguez, I., Domínguez, M., Hidalgo-Hidalgo-de-Cisneros, J.L., Bio-functionalization of electro-synthesized polypyrrole surface by heme enzyme using a mixture of Nafion and glutaraldehyde as synergetic immobilization matrix: conformational characterization and electrocatalytic studies (2011) Appl Surf Sci, 257, pp. 10926-10935
  • Monier, M., Ayad, D.M., Wei, Y., Sarhan, A.A., Immobilization of horseradish peroxidase on modified chitosan beads (2010) Int J Biol Macromol, 46 (324-330)
  • Xu, Q., Mao, C., Liu, N.-N., Zhu, J.-J., Sheng, J., Direct electrochemistry of horseradish peroxidase based on biocompatible carboxymethyl chitosan-gold nanoparticle nanocomposite (2006) Biosens Bioelectron, 22, pp. 768-773
  • Stuart, B.H., (2004) Infrared Spectroscopy: Fundamentals and Applications, , John Wiley & Sons
  • Conley, R.T., (1979) Espectroscopia Infrarroja, , 1° edicion española ed. Alhambra, Spain
  • Amaravathi, M., Babu, M.M., Chandramouli, G., Synthesis of meso- tetrakis (2-chloroquinolin-3-yl) porphyrins (2007) Arkivoc, 2007, pp. 148-153
  • Parker, F.S., (1983) Applications of Infrared, Raman, and Resonance Raman Spectroscopy in Biochemistry, , New York
  • Thomas, D.W., Martell, A.E., Visible and ultraviolet absorption spectra of metal chelates of para-substituted tetraphenylporphines (1958) Archives of Biochemistry and Biophysics., 76, pp. 286-294
  • Huang, G., Luo, Z.-C., Hu, Y.-D., Guo, Y.-A., Jiang, Y.-X., Wei, S.-J., Preparation and characterization of iron tetra (pentaflurophenyl)-porphyrin (tpfpp fe) supported on boehmite (bm) (2012) Chem Eng J, 195-196, pp. 165-172
  • De Villiers, K.A., Kaschula, C.H., Egan, T.J., Marques, H.M., Speciation and structure of ferriprotoporphyrin ix in aqueous solution: spectroscopic and diffusion measurements demonstrate dimerization, but not μ-oxo dimer formation (2007) J Biol Inorg Chem, 12, pp. 101-117
  • Maitra, D., Byun, J., Andreana, P.R., Abdulhamid, I., Diamond, M.P., Saed, G.M., Reaction of hemoglobin with hocl: mechanism of heme destruction and free iron release (2011) Free Radical Biol Med, 51, pp. 374-386

Citas:

---------- APA ----------
Córdoba, A., Magario, I. & Ferreira, M.L. (2015) . Modified chitosan as an economical support for hematin: Application in the decolorization of anthraquinone and azo dyes. Journal of Chemical Technology and Biotechnology, 90(9), 1665-1676.
http://dx.doi.org/10.1002/jctb.4475
---------- CHICAGO ----------
Córdoba, A., Magario, I., Ferreira, M.L. "Modified chitosan as an economical support for hematin: Application in the decolorization of anthraquinone and azo dyes" . Journal of Chemical Technology and Biotechnology 90, no. 9 (2015) : 1665-1676.
http://dx.doi.org/10.1002/jctb.4475
---------- MLA ----------
Córdoba, A., Magario, I., Ferreira, M.L. "Modified chitosan as an economical support for hematin: Application in the decolorization of anthraquinone and azo dyes" . Journal of Chemical Technology and Biotechnology, vol. 90, no. 9, 2015, pp. 1665-1676.
http://dx.doi.org/10.1002/jctb.4475
---------- VANCOUVER ----------
Córdoba, A., Magario, I., Ferreira, M.L. Modified chitosan as an economical support for hematin: Application in the decolorization of anthraquinone and azo dyes. J. Chem. Technol. Biotechnol. 2015;90(9):1665-1676.
http://dx.doi.org/10.1002/jctb.4475