Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Folic acid (FA) encapsulation in protein matrices has been reported as a suitable method for preventing FA degradation upon storage or processing as well as to improve its bioavailability. The ability of β-lactoglobulin (β-lg) and type A gelatin (G) to bind FA and form nano/microparticles under conditions of concentration (up to 5% w/w) and pH (3–7) that could have a technological application has been studied. The degree of folic acid binding to the proteins depended on their pH-dependent ζ-potential, indicating the occurrence of ionic bonds. Regardless of FA concentration, the percentage of bound FA to β-lg or G was 100% at pH 3. At pH 3, the size of particles strongly increased by increasing the molar FA/protein ratio. Protein aggregation and further flocculation was observed at higher molar ratios. However, the size of particles could be modulated by high intensity ultrasound application. FA/protein particles formed at pH 3 were totally reversible by shifting back the pH to 7. This pH dependence is strongly favorable for the delivery of FA at the duodene (pH 7) and for the protection of FA at the pH prevailing in the stomach (pH 3). © 2018 Elsevier Ltd

Registro:

Documento: Artículo
Título:On the binding of folic acid to food proteins performing as vitamin micro/nanocarriers
Autor:Zema, P.; Pilosof, A.M.R.
Filiación:Departamento de Industrias- ITAPROQ, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria (1428)Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
Palabras clave:Aggregation; Delivery; Folic acid; Gelatin; pH; β-lactoglobulin
Año:2018
Volumen:79
Página de inicio:509
Página de fin:517
DOI: http://dx.doi.org/10.1016/j.foodhyd.2018.01.021
Título revista:Food Hydrocolloids
Título revista abreviado:Food Hydrocolloids
ISSN:0268005X
CODEN:FOHYE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0268005X_v79_n_p509_Zema

Referencias:

  • Akhtar, M.J., Khan, M.A., Ahmad, I., Photodegradation of folic acid in aqueous solution (1999) Journal of Pharmaceutical and Biomedical Analysis, 19 (3-4), pp. 269-275
  • Akhtar, M.J., Khan, M.A., Ahmad, I., Identification of photoproducts of folic acid and its degradation pathways in aqueous solution (2003) Journal of Pharmaceutical and Biomedical Analysis, 31 (3), pp. 579-588
  • Alborzi, S., Lim, L.-T., Kakuda, Y., Encapsulation of folic acid and its stability in sodium alginate-pectin-poly(ethylene oxide) electrospun fibres (2013) Journal of Microencapsulation, 30 (1), pp. 64-71. , https://doi.org/10.3109/02652048.2012.696153
  • Arzeni, C., Martínez, K., Zema, P., Arias, A., Pérez, O.E., Pilosof, A.M.R., Comparative study of high intensity ultrasound effects on food proteins functionality (2012) Journal of Food Engineering, 108 (3), pp. 463-472. , https://doi.org/10.1016/j.jfoodeng.2011.08.018
  • Arzeni, C., Pérez, O.E., LeBlanc, J.G., Pilosof, A.M.R., Egg albumin–folic acid nanocomplexes: Performance as a functional ingredient and biological activity (2015) Journal of Functional Foods, 18, pp. 379-386. , https://doi.org/10.1016/j.jff.2015.07.018, Part A
  • Arzeni, C., Pérez, O.E., Pilosof, A.M.R., Power ultrasound assisted design of egg albumin nanoparticles (2015) Food Biophysics, 10 (4), pp. 439-446. , https://doi.org/10.1007/s11483-015-9407-2
  • Ball, G.F.M., Folate (1998) Bioavailability and analysis of vitamins in foods, pp. 439-496. , http://www.springer.com/in/book/9780412780905, Chapman and Hall Retrieved from
  • Behrend, O., Ax, K., Schubert, H., Influence of continuous phase viscosity on emulsification by ultrasound (2000) Ultrasonics Sonochemistry, 7 (2), pp. 77-85
  • Bourassa, P., Hasni, I., Tajmir-Riahi, H.A., Folic acid complexes with human and bovine serum albumins (2011) Food Chemistry, 129 (3), pp. 1148-1155. , https://doi.org/10.1016/j.foodchem.2011.05.094
  • Bourassa, P., Tajmir-Riahi, H.A., Locating the binding sites of folic acid with milk α- and β-caseins (2012) The Journal of Physical Chemistry B, 116 (1), pp. 513-519. , https://doi.org/10.1021/jp2083677
  • Bromley, E.H., Krebs, M.R.H., Donald, A.M., Aggregation across the length-scales in beta-lactoglobulin (2005) Faraday Discussions, 128, pp. 13-27
  • Das, K.P., Kinsella, J.E., pH dependent emulsifying properties of B-lactoglobulin (1989) Journal of Dispersion Science and Technology, 10 (1), pp. 77-102. , https://doi.org/10.1080/01932698908943160
  • Farías, M.E., Martinez, M.J., Pilosof, A.M.R., Casein glycomacropeptide pH-dependent self-assembly and cold gelation (2010) International Dairy Journal, 20 (2), pp. 79-88. , https://doi.org/10.1016/j.idairyj.2009.09.002
  • Gordon, L., Pilosof, A.M.R., Application of high-intensity ultrasounds to control the size of whey proteins particles (2010) Food Biophysics, 5 (3), pp. 203-210. , https://doi.org/10.1007/s11483-010-9161-4
  • Harnsilawat, T., Pongsawatmanit, R., McClements, D.J., Characterization of β-lactoglobulin–sodium alginate interactions in aqueous solutions: A calorimetry, light scattering, electrophoretic mobility and solubility study (2006) Food Hydrocolloids, 20 (5), pp. 577-585. , https://doi.org/10.1016/j.foodhyd.2005.05.005
  • Huang, X., Kakuda, Y., Cui, W., Hydrocolloids in emulsions: Particle size distribution and interfacial activity (2001) Food Hydrocolloids, 15 (4-6), pp. 533-542
  • Jha, N.S., Kishore, N., Thermodynamic studies on the interaction of folic acid with bovine serum albumin (2011) The Journal of Chemical Thermodynamics, 43 (5), pp. 814-821. , https://doi.org/10.1016/j.jct.2010.12.024
  • Leroux, J., Langendorff, V., Schick, G., Vaishnav, V., Mazoyer, J., Emulsion stabilizing properties of pectin (2003) Food Hydrocolloids, 17 (4), pp. 455-462
  • Liang, L., Subirade, M., β-Lactoglobulin/Folic acid Complexes: Formation, characterization, and biological implication (2010) The Journal of Physical Chemistry B, 114 (19), pp. 6707-6712. , https://doi.org/10.1021/jp101096r
  • Liang, L., Zhang, J., Zhou, P., Subirade, M., Protective effect of ligand-binding proteins against folic acid loss due to photodecomposition (2013) Food Chemistry, 141 (2), pp. 754-761. , https://doi.org/10.1016/j.foodchem.2013.03.044
  • Livney, Y.D., Milk proteins as vehicles for bioactives (2010) Current Opinion in Colloid & Interface Science, 15 (1-2), pp. 73-83. , https://doi.org/10.1016/j.cocis.2009.11.002
  • Martinez, M.J., Pilosof, A.M.R., On the relationship between pH-dependent β-lactoglobulin self assembly and gelation dynamics (2018) International Food Research Journal, , (in press)
  • Molloy, A.M., Scott, J.M., Folates and prevention of disease (2001) Public Health Nutrition, 4 (2b), pp. 601-609. , https://doi.org/10.1079/PHN2001144
  • Off, M.K., Steindal, A.E., Porojnicu, A.C., Juzeniene, A., Vorobey, A., Johnsson, A., Ultraviolet photodegradation of folic acid (2005) Journal of Photochemistry and Photobiology B: Biology, 80 (1), pp. 47-55. , https://doi.org/10.1016/j.jphotobiol.2005.03.001
  • Papastoyiannidis, G., Polychroniadou, A., Michaelidou, A.-M., Alichanidis, E., Fermented milks fortified with B-group Vitamins: Vitamin stability and effect on resulting products (2006) Food Science and Technology International, 12 (6), pp. 521-529. , https://doi.org/10.1177/1082013206073274
  • Peñalva, R., Esparza, I., Agüeros, M., Gonzalez-Navarro, C.J., Gonzalez-Ferrero, C., Irache, J.M., Casein nanoparticles as carriers for the oral delivery of folic acid (2015) Food Hydrocolloids, 44, pp. 399-406. , https://doi.org/10.1016/j.foodhyd.2014.10.004
  • Peñalva, R., Esparza, I., González-Navarro, C.J., Quincoces, G., Peñuelas, I., Irache, J.M., Zein nanoparticles for oral folic acid delivery (2015) Journal of Drug Delivery Science and Technology, 30, pp. 450-457. , https://doi.org/10.1016/j.jddst.2015.06.012, Part B
  • Pérez-Masiá, R., López-Nicolás, R., Periago, M.J., Ros, G., Lagaron, J.M., López-Rubio, A., Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications (2015) Food Chemistry, 168, pp. 124-133. , https://doi.org/10.1016/j.foodchem.2014.07.051
  • Pérez, O.E., David-Birman, T., Kesselman, E., Levi-Tal, S., Lesmes, U., Milk protein–vitamin interactions: Formation of beta-lactoglobulin/folic acid nano-complexes and their impact on in vitro gastro-duodenal proteolysis (2014) Food Hydrocolloids, 38, pp. 40-47. , https://doi.org/10.1016/j.foodhyd.2013.11.010
  • Refsum, H., Folate, vitamin B12 and homocysteine in relation to birth defects and pregnancy outcome (2001) British Journal of Nutrition, 85 (S2), pp. S109-S113. , https://doi.org/10.1049/BJN2000302
  • Schrieber, R., Gareis, H., From collagen to gelatine (2007) Gelatine Handbook, pp. 45-117. , https://doi.org/10.1002/9783527610969.ch2, Wiley-VCH Verlag GmbH & Co. KGaA
  • Stevanović, M., Radulović, A., Jordović, B., Uskoković, D., Poly(DL-lactide-co-glycolide) nanospheres for the sustained release of folic acid (2008) Journal of Biomedical Nanotechnology, 4 (3), pp. 349-358. , https://doi.org/10.1166/jbn.2008.321
  • Tabata, Y., Ikada, Y., Protein release from gelatin matrices (1998) Advanced Drug Delivery Reviews, 31 (3), pp. 287-301
  • Tsaih, M.L., Chen, R.H., Effect of degree of deacetylation of chitosan on the kinetics of ultrasonic degradation of chitosan (2003) Journal of Applied Polymer Science, 90 (13), pp. 3526-3531. , https://doi.org/10.1002/app.13027
  • Uhrínová, S., Smith, M.H., Jameson, G.B., Uhrín, D., Sawyer, L., Barlow, P.N., Structural changes accompanying pH-induced dissociation of the β-lactoglobulin dimer † ‡ (2000) Biochemistry, 39 (13), pp. 3565-3574. , https://doi.org/10.1021/bi992629o
  • Vora, A., Riga, A., Dollimore, D., Alexander, K.S., Thermal stability of folic acid (2002) Thermochimica Acta, 392-393, pp. 209-220
  • Wu, Z., Li, X., Hou, C., Qian, Y., Solubility of folic acid in water at pH values between 0 and 7 at temperatures (298.15, 303.15, and 313.15) K (2010) Journal of Chemical & Engineering Data, 55 (9), pp. 3958-3961. , https://doi.org/10.1021/je1000268
  • Zhang, A., Jia, L., Spectroscopic study of the interaction between folic acid and bovine serum albumin (2006) Spectroscopy Letters, 39 (4), pp. 285-298. , https://doi.org/10.1080/00387010600779112
  • Zhang, Y., Li, J., Lang, M., Tang, X., Li, L., Shen, X., Folate-functionalized nanoparticles for controlled 5-Fluorouracil delivery (2011) Journal of Colloid and Interface Science, 354 (1), pp. 202-209. , https://doi.org/10.1016/j.jcis.2010.10.054
  • Zhang, J., Liu, Y., Liu, X., Li, Y., Yin, X., Subirade, M., Liang, L., The folic acid/β-casein complex: Characteristics and physicochemical implications (2014) Food Research International, 57, pp. 162-167. , https://doi.org/10.1016/j.foodres.2014.01.019

Citas:

---------- APA ----------
Zema, P. & Pilosof, A.M.R. (2018) . On the binding of folic acid to food proteins performing as vitamin micro/nanocarriers. Food Hydrocolloids, 79, 509-517.
http://dx.doi.org/10.1016/j.foodhyd.2018.01.021
---------- CHICAGO ----------
Zema, P., Pilosof, A.M.R. "On the binding of folic acid to food proteins performing as vitamin micro/nanocarriers" . Food Hydrocolloids 79 (2018) : 509-517.
http://dx.doi.org/10.1016/j.foodhyd.2018.01.021
---------- MLA ----------
Zema, P., Pilosof, A.M.R. "On the binding of folic acid to food proteins performing as vitamin micro/nanocarriers" . Food Hydrocolloids, vol. 79, 2018, pp. 509-517.
http://dx.doi.org/10.1016/j.foodhyd.2018.01.021
---------- VANCOUVER ----------
Zema, P., Pilosof, A.M.R. On the binding of folic acid to food proteins performing as vitamin micro/nanocarriers. Food Hydrocolloids. 2018;79:509-517.
http://dx.doi.org/10.1016/j.foodhyd.2018.01.021