Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Cassava starch films containing rosemary nanoparticles were successfully produced using a simple approach. Different concentrations (5 and 20% w/w) of ethanolic extracts of rosemary were added to the film-forming aqueous blends containing cassava starch and glycerol, and in this way, rosemary nanoparticles were produced by the solvent displacement. The formulations added of the lowest extract amount led to films containing well distributed rosemary nanoparticles within the matrix. In contrast, higher extract concentration provoked the formation of agglomerates of nanoparticles within the films. Fourier transform infrared spectroscopy and thermogravimetric analysis suggested that the availability of hydroxyl groups within the starch matrix was decreased due to the presence of the rosemary-related compounds. Tensile properties of the cassava starch films were also influenced by the addition of rosemary extract. It was found that the rosemary nanoparticles were able to act as a reinforcement of the starch matrix increasing the elastic modulus and the tensile strength of the films up to 4.0-fold and 2.5-fold, respectively; while the strain at break was slightly decreased, compared with the control films. Finally, the release kinetics of rosemary polyphenols from cassava starch active films to aqueous and fatty food simulants was analyzed. In the aqueous medium, all active films released a polyphenols amount above 60% within the first hour of assay. In contrast, the release rate of rosemary polyphenols into ethanol (i.e. a fatty food simulant) was slower compared with the aqueous one. © 2017 Elsevier Ltd

Registro:

Documento: Artículo
Título:Cassava starch films containing rosemary nanoparticles produced by solvent displacement method
Autor:López-Córdoba, A.; Medina-Jaramillo, C.; Piñeros-Hernandez, D.; Goyanes, S.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Laboratorio de Polímeros y Materiales Compuestos (LP&MC), Instituto de Física de Buenos Aires (IFIBA-CONICET), Buenos Aires, Argentina
Universidad de Buenos Aires, Facultad de Ingeniería, Instituto de Tecnología en Polímeros y Nanotecnología (ITPN-CONICET), Buenos Aires, Argentina
Palabras clave:Antioxidant activity; Cassava starch; Edible films; Nanoparticles; Packaging; Rosemary
Año:2017
Volumen:71
Página de inicio:26
Página de fin:34
DOI: http://dx.doi.org/10.1016/j.foodhyd.2017.04.028
Título revista:Food Hydrocolloids
Título revista abreviado:Food Hydrocolloids
ISSN:0268005X
CODEN:FOHYE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0268005X_v71_n_p26_LopezCordoba

Referencias:

  • Aguilar, F., Autrup, H., Barlow, S., Castle, L., Crebelli, R., Dekrant, W., Use of rosemary extracts as a food additive-Scientific opinion of the panel on food additives, flavourings, processing aids and materials in contact with food (2008) EFSA Journal, 721, pp. 1-29
  • ASTM D882-12, Standard test method for tensile properties of thin plastic sheeting (2012), www.astm.org, 16 ed. ASTM International West Conshohocken, PA Last accesed 14/09/2016; ASTM E96/ E96M-16, Standard Test Methods for water vapor transmission of materials (2016), www.astm.org, 16 ed. ASTM International West Conshohocken, PA Last accesed 14/09/2016; Baner, A., Bieber, W., Figge, K., Franz, R., Piringer, O., Alternative fatty food simulants for migration testing of polymeric food contact materials (1992) Food Additives & Contaminants, 9 (2), pp. 137-148
  • Bhushani, J.A., Anandharamakrishnan, C., Electrospinning and electrospraying techniques: Potential food based applications (2014) Trends in Food Science & Technology, 38 (1), pp. 21-33
  • Bilati, U., Allémann, E., Doelker, E., Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles (2005) European Journal of Pharmaceutical Sciences, 24 (1), pp. 67-75
  • Brand-Williams, W., Cuvelier, M.E., Berset, C., Use of a free radical method to evaluate antioxidant activity (1995) LWT - Food Science and Technology, 28 (1), pp. 25-30
  • Chang-Bravo, L., López-Córdoba, A., Martino, M., Biopolymeric matrices made of carrageenan and corn starch for the antioxidant extracts delivery of Cuban red propolis and yerba mate (2014) Reactive and Functional Polymers, 85, pp. 11-19
  • Fabra, M.J., López-Rubio, A., Lagaron, J.M., Use of the electrohydrodynamic process to develop active/bioactive bilayer films for food packaging applications (2016) Food Hydrocolloids, 55, pp. 11-18
  • García, N.L., Famá, L., Dufresne, A., Aranguren, M., Goyanes, S., A comparison between the physico-chemical properties of tuber and cereal starches (2009) Food Research International, 42 (8), pp. 976-982
  • García, N.L., Famá, L., D'Accorso, N.B., Goyanes, S., Biodegradable starch nanocomposites (2015) Eco-friendly polymer nanocomposites, 75, pp. 17-77. , V.K. Thakur M.K. Thakur Springer India
  • Gonçalves, C.M.B., Tomé, L.C., Garcia, H., Brandão, L., Mendes, A.M., Marrucho, I.M., Effect of natural and synthetic antioxidants incorporation on the gas permeation properties of poly(lactic acid) films (2013) Journal of Food Engineering, 116 (2), pp. 562-571
  • Han, J.H., Floros, J.D., Casting antimicrobial packaging films and measuring their physical properties and antimicrobial activity (1997) Journal of Plastic Film and Sheeting, 13 (4), pp. 287-298
  • Jiménez, A., Fabra, M.J., Talens, P., Chiralt, A., Edible and biodegradable starch films: A review (2012) Food and Bioprocess Technology, 5 (6), pp. 2058-2076
  • Joye, I.J., McClements, D.J., Production of nanoparticles by anti-solvent precipitation for use in food systems (2013) Trends in Food Science & Technology, 34 (2), pp. 109-123
  • Kakran, M., Sahoo, N.G., Tan, I.-L., Li, L., Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods (2012) Journal of Nanoparticle Research, 14 (3), pp. 1-11
  • Liu, D., Parker, M.L., Wellner, N., Kirby, A.R., Cross, K., Morris, V.J., Structural variability between starch granules in wild type and in ae high-amylose mutant maize kernels (2013) Carbohydrate Polymers, 97 (2), pp. 458-468
  • Medina Jaramillo, C., González Seligra, P., Goyanes, S., Bernal, C., Famá, L., Biofilms based on cassava starch containing extract of yerba mate as antioxidant and plasticizer (2015) Starch - Stärke, 67 (9-10), pp. 780-789
  • Pastor, C., Sánchez-González, L., Cháfer, M., Chiralt, A., González-Martínez, C., Physical and antifungal properties of hydroxypropylmethylcellulose based films containing propolis as affected by moisture content (2010) Carbohydrate Polymers, 82 (4), pp. 1174-1183
  • Peppas, N.A., Khare, A.R., Preparation, structure and diffusional behavior of hydrogels in controlled release (1993) Advanced Drug Delivery Reviews, 11 (1), pp. 1-35
  • Peppas, N.A., Sahlin, J.J., A simple equation for the description of solute release. III. Coupling of diffusion and relaxation (1989) International Journal of Pharmaceutics, 57 (2), pp. 169-172
  • Piñeros-Hernandez, D., Medina-Jaramillo, C., López-Córdoba, A., Goyanes, S., Edible cassava starch films carrying rosemary antioxidant extracts for potential use as active food packaging (2017) Food Hydrocolloids, 63, pp. 488-495
  • Pranoto, Y., Rakshit, S., Salokhe, V., Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin (2005) LWT-Food Science and Technology, 38 (8), pp. 859-865
  • Ribeiro, A., Caleja, C., Barros, L., Santos-Buelga, C., Barreiro, M.F., Ferreira, I.C.F.R., Rosemary extracts in functional foods: Extraction, chemical characterization and incorporation of free and microencapsulated forms in cottage cheese (2016) Food & Function, 7 (5), pp. 2185-2196
  • Ritger, P.L., Peppas, N.A., A simple equation for description of solute release II. Fickian and anomalous release from swellable devices (1987) Journal of Controlled Release, 5 (1), pp. 37-42
  • Rodríguez-Rojo, S., Visentin, A., Maestri, D., Cocero, M.J., Assisted extraction of rosemary antioxidants with green solvents (2012) Journal of Food Engineering, 109 (1), pp. 98-103
  • Sayanjali, S., Ghanbarzadeh, B., Ghiassifar, S., Evaluation of antimicrobial and physical properties of edible film based on carboxymethyl cellulose containing potassium sorbate on some mycotoxigenic Aspergillus species in fresh pistachios (2011) LWT-Food Science and Technology, 44 (4), pp. 1133-1138
  • Seligra, P.G., Medina Jaramillo, C., Famá, L., Goyanes, S., Biodegradable and non-retrogradable eco-films based on starch–glycerol with citric acid as cross linking agent (2016) Carbohydrate Polymers, 138, pp. 66-74
  • Shi, R., Bi, J., Zhang, Z., Zhu, A., Chen, D., Zhou, X., The effect of citric acid on the structural properties and cytotoxicity of the polyvinyl alcohol/starch films when molding at high temperature (2008) Carbohydrate Polymers, 74 (4), pp. 763-770
  • Singleton, V.L., Orthofer, R., Lamuela-Raventós, R.M., Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent (1999) Methods in enzymology, 299, pp. 152-178. , P. Lester Academic Press
  • Stalder, A., Kulik, G., Sage, D., Barbieri, L., Hoffmann, P., A snake-based approach to accurate determination of both contact points and contact angles (2006) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 286 (1), pp. 92-103
  • Teodoro, A.P., Mali, S., Romero, N., de Carvalho, G.M., Cassava starch films containing acetylated starch nanoparticles as reinforcement: Physical and mechanical characterization (2015) Carbohydrate Polymers, 126, pp. 9-16
  • Vicentini, N.M., Dupuy, N., Leitzelman, M., Cereda, M.P., Sobral, P.J.A., Prediction of cassava starch edible film properties by chemometric analysis of infrared spectra (2005) Spectroscopy Letters, 38 (6), pp. 749-767
  • Vogler, E.A., Structure and reactivity of water at biomaterial surfaces (1998) Advances in Colloid and Interface Science, 74 (1), pp. 69-117

Citas:

---------- APA ----------
López-Córdoba, A., Medina-Jaramillo, C., Piñeros-Hernandez, D. & Goyanes, S. (2017) . Cassava starch films containing rosemary nanoparticles produced by solvent displacement method. Food Hydrocolloids, 71, 26-34.
http://dx.doi.org/10.1016/j.foodhyd.2017.04.028
---------- CHICAGO ----------
López-Córdoba, A., Medina-Jaramillo, C., Piñeros-Hernandez, D., Goyanes, S. "Cassava starch films containing rosemary nanoparticles produced by solvent displacement method" . Food Hydrocolloids 71 (2017) : 26-34.
http://dx.doi.org/10.1016/j.foodhyd.2017.04.028
---------- MLA ----------
López-Córdoba, A., Medina-Jaramillo, C., Piñeros-Hernandez, D., Goyanes, S. "Cassava starch films containing rosemary nanoparticles produced by solvent displacement method" . Food Hydrocolloids, vol. 71, 2017, pp. 26-34.
http://dx.doi.org/10.1016/j.foodhyd.2017.04.028
---------- VANCOUVER ----------
López-Córdoba, A., Medina-Jaramillo, C., Piñeros-Hernandez, D., Goyanes, S. Cassava starch films containing rosemary nanoparticles produced by solvent displacement method. Food Hydrocolloids. 2017;71:26-34.
http://dx.doi.org/10.1016/j.foodhyd.2017.04.028