Corral, M.L.; Cerrutti, P.; Vázquez, A.; Califano, A."Bacterial nanocellulose as a potential additive for wheat bread" (2017) Food Hydrocolloids. 67:189-196
El editor solo permite la decarga de la versión post-print. Si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Bacterial nanocellulose (BNC) is an emerging nanomaterial with a morphologic structure of a 3-D network and unique properties produced by several species of bacteria. The objective of the present work was to evaluate whether the addition of BNC improved the baking quality of wheat flours, making a change in the viscoelastic behavior of the mass. A study of the rheological behavior of wheat bread dough containing BNC was performed by thermo-rheological and isothermal dynamic oscillatory experiments. The baking response and bread quality parameters were also analyzed. BNC increased specific volume, and moisture retention, decreasing browning index. Although BNC produced both raw and heat-treated doughs with more elastic characteristics, textural studies revealed that the addition of BNC reduced firmness of bread crumb. Confocal laser scanning microscopy observations showed differences in gluten filaments between control and BNC crumb samples that could explain the larger average porous size of BNC crumb. BNC could be used as improver in the bread-making performance. © 2017 Elsevier Ltd


Documento: Artículo
Título:Bacterial nanocellulose as a potential additive for wheat bread
Autor:Corral, M.L.; Cerrutti, P.; Vázquez, A.; Califano, A.
Filiación:Instituto de Tecnología de Polímeros y Nanotecnología (ITPN), UBA-CONICET, Facultad de Ingeniería, UBA, Las Heras, Buenos Aires, 2214, Argentina
Facultad de Ciencias Exactas y Naturales (FCEN), UBA, Ciudad Universitaria, Buenos Aires, Argentina
Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Conicet – CICPBA - Facultad de Ciencias Exactas, UNLP, 47 y 116, La Plata, Argentina
Palabras clave:Bacterial nanocellulose; Bread crumb; Dough; Rheology; Texture; Viscoelasticity
Página de inicio:189
Página de fin:196
Título revista:Food Hydrocolloids
Título revista abreviado:Food Hydrocolloids


  • AACCIM, Method AACCI 44–19.01. Moisture – air-oven method, drying at 135°. Approved methods of analysis (2014), 11th ed. AACC International St Paul last accessed 11/10/2016; Agyare, K.K., Xiong, Y.L., Addo, K., Akoh, C.C., Dynamic rheological and thermal properties of soft wheat flour dough containing structured lipid (2004) Journal of Food Science, 69, pp. 297-302
  • Amemiya, J.I., Menjivar, J.A., Comparison of small and large deformation measurements to characterize the rheology of wheat flour doughs (1992) Rheology of foods, pp. 91-108. , R.P. Borwankar C.F. Shoemaker Elsevier Applied Science New York
  • Baumgaertel, M., De Rosa, M.E., Machado, J., Masse, M., Winter, H.H., The relaxation time spectrum of nearly monodisperse polybutadiene melts (1991) Rheologica Acta, 3, pp. 75-82
  • Bourne, M.C., Texture profile analysis (1978) Food Technology, 32, pp. 62-66. , 72
  • Brosnan, T., Sun, D.W., Improving quality inspection of food products by computer vision – a review (2004) Journal of Food Engineering, 61 (1), pp. 3-16
  • Brown, E.E., Laborie, M.P.G., Bioengineering bacterial cellulose/poly (ethylene oxide) nanocomposites (2007) Biomacromolecule, 8, pp. 3074-3081
  • Bruno, M., Moresi, M., Interrelationship between the transient functions of bologna using Friedrich and Heymann theory (2005) Journal of Texture Studies, 36, pp. 1-24
  • Buera, M., Lozano, R., Petriella, C., Definition of colour in the non enzymatic browning process (1986) Die Farbe, 32 (33), pp. 318-322
  • Cauvain, S.P., Technology in bread making (2015), 3rd ed. Springer London (Chapter 5); Cerrutti, P., Roldán, P., Martínez García, R., Galvagno, M.A., Vázquez, A., Foresti, M.L., Production of bacterial nanocellulose from wine industry residues: Importance of fermentation time on pellicles characteristics (2016) Journal of Applied Polymer Science, 133, pp. 43109-43117
  • Correa, M.J., Añón, M.C., Pérez, G.T., Ferrero, C., Effect of modified celluloses on dough rheology and microstructure (2010) Food Research International, 43, pp. 780-787
  • Correa, M.J., Ferrer, E., Añón, M.C., Ferrero, M.C., Interaction of modified celluloses and pectins with gluten proteins (2014) Food Hydrocolloids, 35, pp. 91-99
  • Curic, D., Novotni, D., Smerdel, B., Bread making. Engineering aspects of cereal and cereal based products (2013), CRC Press New York (Chapter 7); Dogan, I.S., Dynamic rheological properties of dough as affected by amylases from various sources (2002) Nahrung, 46, pp. 399-403
  • Dreese, P.C., Faubion, J.M., Hoseney, R.C., Dynamic rheological properties of flour, gluten, and gluten-starch doughs. I. Temperature-dependent changes during heating (1988) Cereal Chemistry, 65, pp. 348-353
  • Du, C.J., Cheng, Q., Sun, D.W., Computer vision in the bakery industry (2012) Computer vision technology in the food and beverage industries, pp. 422-450. , D.-W. Sun Woodhead Publishing Cambridge
  • Dürrenberger, M., Handschin, S., Conde-Petit, B., Escher, F., Visualization of food structure by confocal laser scanning microscopy (2001) Food Science and Technology, 34, pp. 11-17
  • Eckardt, J., Öhgren, C., Alpa, A., Ekman, S., Åström, A., Chen, G., Long-term frozen storage of wheat bread and dough. Effect of time, temperature and fibre on sensory quality, microstructure and state of water (2013) Journal of Cereal Science, 57, pp. 125-133
  • Escalada Pla, M., Rojas, A.M., Gerschenson, L.M., Effect of butternut (Cucurbita moschata Duchesne ex Poiret) fibres on bread making, quality and staling (2013) Food Bioprocess Technology, 6, pp. 828-838
  • Ferry, J., Viscoelastic properties of polymers (1980), John Wiley & Sons New York (Chapter 3); Friedrich, C.H.R., Heymann, L., Extension of a model for crosslinking polymer at the gel point (1988) Journal of Rheology, 32, pp. 235-241
  • Gama, M., Gatenholm, P., Klemm, D., Bacterial nanocellulose. A sophisticated multifunctional material (2013), CRC Press Boca Ratón (Chapter 2); Gómez, M., Ronda, F., Caballero, P.A., Blanco, C.A., Rosell, C.M., Functionality of different hydrocolloids on the quality and shelf-life of yellow layer cakes (2007) Food Hydrocolloids, 21, pp. 167-173
  • Guarda, A., Rosell, C.M., Benedito, C., Galotto, M.J., Different hydrocolloids as bread improvers and antistaling agents (2004) Food Hydrocolloids, 18, pp. 241-247
  • Iguchi, M., Yamanaka, S., Budhiono, A., Bacterial cellulose-masterpiece of nature's arts (2000) Journal of Material Science, 35, pp. 261-270
  • Kenny, S., Wehrle, K., Auty, M., Arendt, E.K., Influence of sodium caseinate and whey protein on baking properties and rheology of frozen dough (2001) Cereal Chemistry, 78, pp. 458-463
  • Klemm, D., Schumann, D., Kramer, F., Hessler, N., Hornung, M., Schmauder, H.P., Nanocelluloses as innovative polymers in research and application (2006) Advances in Polymer Science, 205, pp. 49-96
  • Lefebvre, J., Pruska-Kedzior, A., Kedzior, Z., Lavenant, L., A phenomenological analysis of wheat gluten viscoelastic response in retardation and dynamic experiments over a large time scale (2003) Journal of Cereal Science, 38, pp. 257-267
  • León, A.E., Barrera, G.N., Pérez, G.T., Ribotta, P.D., Rosell, C.M., Effect of damaged starch levels on flour-thermal behaviour and bread staling (2006) European Food Research and Technology, 224, pp. 187-192
  • Lin, S.B., Chen, L.C., Chen, H.H., Physical characteristics of surimi and bacterial cellulose composite gel (2011) Journal of Food Process Engineering, 34 (4), pp. 1363-1379
  • Lin, K.W., Lin, H.Y., Quality characteristics of Chinese-style meatball containing bacterial cellulose (nata) (2004) Journal of Food Science, 69 (3), pp. Q107-Q111
  • Lorenzo, G., Zaritzky, N., Califano, A., Optimization of non-fermented gluten-free dough composition based on rheological behavior for industrial production of ‘‘empanadas’’ and pie-crusts (2008) Journal of Cereal Science, 48, pp. 224-231
  • Mendoza, F., Dejmek, P., Aguilera, J.M., Calibrated color measurements of agricultural foods using image analysis (2006) Postharvest Biology and Technology, 41, pp. 285-295
  • Moosavi-Nasab, M., Yousefi, A., Biotechnological production of cellulose by Gluconacetobacter xylinus from agricultural waste (2011) Iranian Journal of Biotechnology, 9, pp. 94-101
  • Peighambardoust, S.H., van der Goot, A.J., van Vliet, T., Hamer, R.J., Boom, R.M., Microstructure formation and rheological behaviour of dough under simple shear flow (2006) Journal of Cereal Science, 43, pp. 183-197
  • Ponzio, N.R., Ferrero, C., Puppo, M.C., Wheat varietal flours: Influence of pectin and DATEM on dough and bread quality (2013) International Journal of Food Properties, 16, pp. 33-44
  • Purlis, E., Salvadori, V.O., Modelling the browning of bread during baking (2009) Food Research International, 42, pp. 865-870
  • Ravindra, P., Genovese, D.B., Foedgeding, E.A., Rao, M.A., Rheology of heated mixed whey protein isolate/cross-linked waxy maize starch dispersions (2004) Food Hydrocolloids, 18, pp. 775-781
  • Ribotta, P.D., Pérez, G.T., León, A.E., Añón, M.C., Effect of emulsifier and guar gum on microstructural, rheological and baking performance of frozen bread dough (2004) Food Hydrocolloids, 18, pp. 305-313
  • Ritzoulis, C., Scoutaris, N., Papademetriou, K., Stavroulias, S., Panayiotou, C., Milk protein-based emulsion gels for bone tissue engineering (2005) Food Hydrocolloids, 19, pp. 575-581
  • Robson, A.A., Chocolate bars based on human nutritional requirements (2013) Chocolate in health and nutrition, pp. 143-148. , R.R. Watson V.R. Preedy S. Zibadi Springer London
  • Rosell, C.M., Rojas, J.A., Benedito de Barber, C., Influence of hydrocolloids on dough rheology and bread quality (2001) Food Hydrocolloids, 15, pp. 75-81
  • Salvador, A., Sanz, T., Fiszman, S.M., Dynamic rheological characteristics of wheat flour–water doughs. Effect of adding NaCl, sucrose and yeast (2006) Food Hydrocolloids, 20, pp. 780-786
  • Sapirstein, H., The imaging and measurement of bubbles in bread (1999) Bubbles in food, pp. 233-243. , G.M. Campbell C. Webb S.S. Pandiella American Association of Cereal Chemists St Paul, MN
  • Schofield, J., Bottomley, R., Timms, M., Booth, M., The effect of heat on wheat gluten and the involvement of sulphydryl-disulphide interchange reactions (1983) Journal of Cereal Science, 1, pp. 241-253
  • Shi, Z., Zhang, Y., Phillips, G.O., Yang, G., Utilization of bacterial cellulose in food (2014) Food Hydrocolloids, 35, pp. 539-545
  • Stauffer, C.E., Functional additives for bakery foods (1990), Van Nostrand Reinhold New York (Chapter 5); Steffe, J.F., Rheological methods in food process engineering (1996), Freeman Press East Lansig (Chapter 5); Strom, G., Ohgren, C., Ankerfors, M., Nanocellulose as additive for foodstuff (2013) Innventia Report, 403, pp. 1-25
  • Tabuchi, M., Nanobiotech versus synthetic nanotech? (2007) Nature Biotechnology, 25, pp. 389-390
  • Ureta, M.M., Olivera, D.F., Salvadori, V.O., Quality attributes of muffins: Effect of baking operative conditions (2014) Food and Bioprocess Technology, 7, pp. 463-470
  • Vázquez, A., Foresti, M.L., Cerrutti, P., Galvagno, M.A., Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus (2013) Journal of Polymers and the Environment, 21, pp. 545-554
  • Walter, J., FFT filter description for ImageJ (2003),, Available from:; Wang, J., Rosell, C.M., Benedito de Barbera, C., Effect of the addition of different fibres on wheat dough performance and bread quality (2002) Food Chemistry, 79, pp. 221-226
  • Winter, H.H., Mours, M., The cyber infrastructure initiative for rheology (2006) Rheologica Acta, 45, pp. 331-338
  • Yang, T., Bai, Y., Wu, F., Yang, N., Zhang, Y., Bashari, M., Combined effects of glucose oxidase, papain and xylanase on browning inhibition and characteristics of fresh whole wheat dough (2014) Journal of Cereal Science, 60, pp. 249-254


---------- APA ----------
Corral, M.L., Cerrutti, P., Vázquez, A. & Califano, A. (2017) . Bacterial nanocellulose as a potential additive for wheat bread. Food Hydrocolloids, 67, 189-196.
---------- CHICAGO ----------
Corral, M.L., Cerrutti, P., Vázquez, A., Califano, A. "Bacterial nanocellulose as a potential additive for wheat bread" . Food Hydrocolloids 67 (2017) : 189-196.
---------- MLA ----------
Corral, M.L., Cerrutti, P., Vázquez, A., Califano, A. "Bacterial nanocellulose as a potential additive for wheat bread" . Food Hydrocolloids, vol. 67, 2017, pp. 189-196.
---------- VANCOUVER ----------
Corral, M.L., Cerrutti, P., Vázquez, A., Califano, A. Bacterial nanocellulose as a potential additive for wheat bread. Food Hydrocolloids. 2017;67:189-196.