Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The influence of pH (4-7) and sodium alginate (SA) concentration (0.125-0.25wt%) on the properties of linseed oil-in-water emulsions stabilized by a whey protein isolate (WPI) was investigated. Droplet size, droplet charge, creaming stability and optical microscopy measurements as well as determination of non-adsorbed biopolymers at the oil-water interface were made. At pH 6 and 7, anionic alginate did not adsorb onto the surfaces of WPI-coated droplets due to strong electrostatic repulsion between biopolymers. Remaining SA molecules in the continuous phase induce emulsion destabilization by depletion flocculation, with the formation of floc chains that, after a period of latency, promoted phase separation with high creaming indexes. Both the delay time and the cream layer thickness increased when increasing SA concentration. At pH 5, ζ-potential measurements demonstrate deposition of SA onto WPI interfacial membrane to form a bilayer around oil droplets. Besides, no droplet aggregation was observed and emulsions were stable to creaming after one-week storage. At pH 4, 0.125wt% SA emulsions were prone to extensive droplet aggregation probably enhanced by bridging flocculation, exhibiting a gel-like microstructure of interconnected flocs, which then promoted phase separation. However, when increasing initial SA concentration in these systems, the degree of droplet aggregation decreased. These results suggestthat the best conditions to produce stable emulsions as encapsulation matrices for the delivery of high polyunsaturated fatty acid oils would be 0.25wt% SA pH 5. © 2014 Elsevier Ltd.

Registro:

Documento: Artículo
Título:Multilayer emulsions as a strategy for linseed oil microencapsulation: Effect of pH and alginate concentration
Autor:Fioramonti, S.A.; Martinez, M.J.; Pilosof, A.M.R.; Rubiolo, A.C.; Santiago, L.G.
Filiación:Grupo de Biocoloides, Instituto de Tecnología de Alimentos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Creaming; Emulsion stability; Flocculation; Layer-by-layer deposition; Sodium alginate; Whey protein isolate
Año:2015
Volumen:43
Página de inicio:8
Página de fin:17
DOI: http://dx.doi.org/10.1016/j.foodhyd.2014.04.026
Título revista:Food Hydrocolloids
Título revista abreviado:Food Hydrocolloids
ISSN:0268005X
CODEN:FOHYE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0268005X_v43_n_p8_Fioramonti

Referencias:

  • Aitken, A., Learmonth, M., (1996) The protein protocols handbook, part I
  • Camino, N.A., Carrera Sanchez, C., Rodríguez Patino, J.M., Pilosof, A.M.R., Hydroxypropylmethylcellulose-β-lactoglobulin mixtures at the oil-water interface. Bulk, interfacial and emulsification behavior as affected by pH (2012) Food Hydrocolloids, 27, pp. 464-474
  • Chee, C.P., Gallaher, J.J., Djordjevic, D., Faraji, H., McClements, D.J., Decker, E.A., Chemical and sensory analysis of strawberry flavoured yogurt supplemented with an algae oil emulsion (2005) Journal of Dairy Research, 72 (3), pp. 311-316
  • Dalgleish, D.G., Senaratne, V., Francois, S., Interactions between β-lactalbumin and α-lactoglobulin in the early stages of heat denaturation (1997) Journal of Agricultural and Food Chemistry, 45, pp. 3459-3464
  • De Kruif, C.G., Weinbreck, F., de Vries, R., Complex coacervation of proteins and anionic polysaccharides (2004) Current Opinion in Colloid & Interface Science, 9, pp. 340-349
  • Dickinson, E., Flocculation of protein-stabilized oil-in-water emulsions (2010) Colloids and Surfaces B: Biointerfaces, 81, pp. 130-140
  • Dickinson, E., Mixed biopolymers at interfaces: competitive adsorption and multilayer structures (2011) Food Hydrocolloids, 25, pp. 1966-1983
  • Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F., Colorimetric method for determination of sugars and related substances (1956) Analytical Chemistry, 28 (3), pp. 350-356
  • Fioramonti, S.A., Perez, A.A., Aríngoli, E.E., Rubiolo, A.C., Santiago, L.G., Design and characterization of soluble biopolymer complexes produced by electrostatic self-assembly of a whey protein isolate and sodium alginate (2014) Food Hydrocolloids, 35, pp. 129-136
  • Gallardo, G., Guida, L., Martinez, V., López, M.C., Bernhardt, D., Blasco, R., Microencapsulation of linseed oil by spray drying for functional food application (2013) Food Research International, 52, pp. 473-482
  • Garg, M.L., Wood, L.G., Singh, H., Moughan, P.J., Means of delivering recommended levels of long-chain omega-3 polyunsaturated fatty acids in human diets (2006) Journal of Food Science, 71 (5), pp. 66-71
  • Gu, Y.S., Decker, E.A., McClements, D.J., Influence of pH and carrageenan type on properties of β-lactoglobulin stabilized oil-in-water emulsions (2005) Food Hydrocolloids, 19, pp. 83-91
  • Guzey, D., McClements, D.J., Formation, stability and properties of multilayer emulsions for application in the food industry (2006) Advances in Colloid and Interface Science, pp. 227-248
  • Hibbeln, J.R., Nieminen, L.R.G., Blasbalg, T.L., Riggs, J.A., Lands, W.E.M., Healthy intakes of omega-3 and omega-6 fatty acids: estimations considering worldwide diversity (2006) American Journal of Clinical Nutrition, 83 (6), pp. 1483S-1493S
  • Innis, S., Dietary ω-3 fatty acids and brain development (2007) The Journal of Nutrition, 137, pp. 855-859
  • Jackel, V.K., Über die Funktionen des Schutzkolloids (1964) Kolloid-Zeitschrift und Zeitschrift für Polymere, 197, pp. 143-151
  • Jafari, S.M., Assadpoor, E., He, Y., Bhandari, B., Re-coalescence of emulsion droplets during high-energy emulsification (2008) Food Hydrocolloids, 22, pp. 1191-1202
  • Jones, O.G., McClements, D.J., Recent progress in biopolymer nanoparticle and microparticle formation by heat-treating electrostatic protein-polysaccharide complexes (2011) Advances in Colloid and Interface Science, 167, pp. 49-62
  • Khalloufi, S., Alexander, M., Goff, H.D., Corredig, M., Physicochemical properties of whey protein isolate stabilized oil-in-water emulsions when mixed with flaxseed gum at neutral pH (2008) Food Research International, 41, pp. 964-972
  • Klinkesorn, U., Sophanodora, P., Chinachoti, P., Decker, E.A., McClements, D.J., Encapsulation of emulsified tuna oil in two-layered interfacial membranes prepared using electrostatic layer-by-layer deposition (2005) Food Hydrocolloids, 19, pp. 1044-1053
  • Lee, S., Faustman, C., Djordjevic, D., Faraji, H., Decker, E.A., Effect of antioxidants on stabilization of meat products fortified with n-3 fatty acids (2006) Meat Science, 72 (1), pp. 18-24
  • Lizarraga, M.S., Pan, L.G., Añón, M.C., Santiago, L.G., Stability of concentrated emulsions measured by optical and rheological methods. Effect of processing conditions - I. Whey protein concentrate (2008) Food Hydrocolloids, 22, pp. 868-878
  • Manoj, P., Fillery-Travis, A.J., Watson, A.D., Hibbered, D.J., Robins, M.M., Characterization of a depletion-flocculated polydisperse emulsion: I. Creaming behavior (1998) Journal of Colloid and Interface Science, 207, pp. 283-293
  • McClements, D.J., (1999) Food emulsions: Principles, practice, and techniques, , CRC Press, Boca Ratón, Florida, USA
  • McClements, D.J., Comments on viscosity enhancement and depletion flocculation by polysaccharides (2000) Food Hydrocolloids, 14, pp. 173-177
  • McClements, D.J., Protein-stabilized emulsions (2004) Current Opinion in Colloid & Interface Science, 9, pp. 305-313
  • McClements, D.J., Non-covalent interactions between proteins and polysaccharides (2006) Biotechnology Advances, 24, pp. 621-625
  • McClements, D.J., Decker, E.A., Lipid oxidation in oil-in-water emulsions: impact of molecular environment on chemical reactions in heterogeneous food systems (2000) Journal of Food Science, 65 (8), pp. 1270-1282
  • McClements, D.J., Decker, E.A., Weiss, J., Emulsion-based delivery systems for lipophilic bioactive components (2007) Journal of Food Science, 72 (8), pp. 109-124
  • Meller, A., Stavans, J., Stability of emulsions with nonadsorbing polymers (1996) Langmuir, 12, pp. 301-304
  • Molina Ortiz, S.E., Puppo, M.C., Wagner, J.R., Relationship between changes and functional properties of soy protein isolates-carrageenan systems (2004) Food Hydrocolloids, 18, pp. 1045-1053
  • Parker, A., Gunning, P.A., Robins, M.M., How does xanthan stabilize salad dressing? (1995) Food Hydrocolloids, 9, pp. 333-342
  • Perrechil, F.A., Cunha, R.L., Stabilization of multilayered emulsions by sodium caseinate and κ-carrageenan (2013) Food Hydrocolloids, 30, pp. 606-613
  • Pongsawatmanit, R., Harnsilawat, T., McClements, D.J., Influence of alginate, pH and ultrasound treatment on palm oil-in-water emulsions stabilized by β-lactoglobulin (2006) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 287, pp. 59-67
  • Radford, S.J., Dickinson, E., Depletion flocculation of caseinate-stabilised emulsions: what is the optimum size of the non-adsorbed protein nano-particles? (2004) Colloids and Surfaces A: Physicochemical and Engineering Aspects, 238, pp. 71-81
  • Rodríguez Patino, J.M., Pilosof, A.M.R., Protein-polysaccharide interactions at fluid interfaces (2011) Food Hydrocolloids, 25, pp. 1925-1937
  • Sagalowicz, L., Leser, M.E., Delivery for liquid food products (2010) Current Opinion in Colloid & Interface Science, 15, pp. 61-72
  • Santiago, L.G., Carrara, C.R., González, R.J., Interaction of soy protein isolate and meat protein in a model emulsion system. Effect of emulsification order and characteristics of soy isolate used (2005) Food Science and Technology International, 11 (2), pp. 79-88
  • Santiago, L.G., Gonzalez, R.J., Fillery-Travis, A., Robins, M., Bonaldo, A.G., Carrara, C., The influence of xanthan and λ-carrageenan on the creaming and flocculation of an oil-in-water emulsion containing soy protein (2002) Brazilian Journal of Chemical Engineering, 19 (4), pp. 411-417
  • Taherian, A.R., Britten, M., Sabik, H., Fustier, P., Ability of whey protein isolate and/or fish gelatin to inhibit physical separation and lipid oxidation in fish oil-in-water beverage emulsion (2011) Food Hydrocolloids, 25, pp. 868-878
  • Uauy, R., Dangour, A., Nutrition in brain development and aging: role of essential fatty acids (2006) Nutrition Reviews, 64 (5), pp. 24-33
  • Weinbreck, F., (2004) Whey protein/gum arabic coacervates: Structure an dynamics, , (Thesis), Ultrech University, The Netherlands

Citas:

---------- APA ----------
Fioramonti, S.A., Martinez, M.J., Pilosof, A.M.R., Rubiolo, A.C. & Santiago, L.G. (2015) . Multilayer emulsions as a strategy for linseed oil microencapsulation: Effect of pH and alginate concentration. Food Hydrocolloids, 43, 8-17.
http://dx.doi.org/10.1016/j.foodhyd.2014.04.026
---------- CHICAGO ----------
Fioramonti, S.A., Martinez, M.J., Pilosof, A.M.R., Rubiolo, A.C., Santiago, L.G. "Multilayer emulsions as a strategy for linseed oil microencapsulation: Effect of pH and alginate concentration" . Food Hydrocolloids 43 (2015) : 8-17.
http://dx.doi.org/10.1016/j.foodhyd.2014.04.026
---------- MLA ----------
Fioramonti, S.A., Martinez, M.J., Pilosof, A.M.R., Rubiolo, A.C., Santiago, L.G. "Multilayer emulsions as a strategy for linseed oil microencapsulation: Effect of pH and alginate concentration" . Food Hydrocolloids, vol. 43, 2015, pp. 8-17.
http://dx.doi.org/10.1016/j.foodhyd.2014.04.026
---------- VANCOUVER ----------
Fioramonti, S.A., Martinez, M.J., Pilosof, A.M.R., Rubiolo, A.C., Santiago, L.G. Multilayer emulsions as a strategy for linseed oil microencapsulation: Effect of pH and alginate concentration. Food Hydrocolloids. 2015;43:8-17.
http://dx.doi.org/10.1016/j.foodhyd.2014.04.026