Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Casein glycomacropeptide (CMP) found in cheese whey is a C-terminal hydrophilic glycopeptide released from κ-casein by the action of chymosin during cheese making. In a previous work a self-assembly model for CMP at room temperature was proposed, involving a first step of hydrophobic assembly followed by a second step of electrostatic interactions which occurs below pH 4.5. The objective of the present work was to study, by dynamic light scattering (DLS), the effect of heating (35-85 °C) on the pH-driven CMP self-assembly and its impact on the dynamics of CMP gelation. The concentration of CMP was 3%. w/w for DLS and 12%. w/w for rheological measurements. The solutions at pH 4.5 and 6.5 did not show any change in the particle size distributions upon heating. In contrast the solutions at pH lower than 4.5 that showed electrostatic self-assembly at room temperature were affected by heating. The mean diameter of assembled CMP increased by decreasing pH. For all solutions with pH lower than 4.5, the particle size did not change on cooling, suggesting that the assembled CMP forms formed during heating were stable. The gel point determined as G'-G″ crossover, occurred in all systems at 70 °C, but at different times. The rate of self-assembly determined by DLS as well as the rate of gelation increased with increasing temperature and decreasing pH from 4 to 2. Increasing temperature and decreasing pH, the first step of CMP self-assembly by hydrophobic interactions is speed out. All the self-assembled structures and the gels formed at different temperatures were pH-reversible but did not revert to the initial size (monomer) but to associated forms that correspond mainly to CMP dimers. © 2010 Elsevier Ltd.

Registro:

Documento: Artículo
Título:Casein glycomacropeptide pH-driven self-assembly and gelation upon heating
Autor:Martinez, M.J.; Farías, M.E.; Pilosof, A.M.R.
Filiación:Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Departamento de Tecnología, Universidad Nacional de Luján, Ruta 5 y 7, Luján, 6700 Buenos Aires, Argentina
Palabras clave:Casein glycomacropeptide; Heat gelation; Heat-induced self-assembly; PH
Año:2011
Volumen:25
Número:5
Página de inicio:860
Página de fin:867
DOI: http://dx.doi.org/10.1016/j.foodhyd.2010.08.005
Título revista:Food Hydrocolloids
Título revista abreviado:Food Hydrocolloids
ISSN:0268005X
CODEN:FOHYE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0268005X_v25_n5_p860_Martinez

Referencias:

  • Aguilera, J.M., Xiong, Y.L., Kinsella, J.E., Viscoelastic properties of mixed dairy gels (1993) Food Research International, 26, pp. 11-17
  • Brody, E.P., Biological activities of bovine glycomacropeptide (2000) British Journal of Nutrition, 84 (1), pp. S39-S46
  • Bryant, C.M., McClements, D.J., Molecular basis of protein functionality with special consideration of cold-set gels derived from heat-denatured whey (1998) Trend in Food Science and Technology, 9, pp. 143-151
  • Burton, J., Skudder, P.J., (1987), Whey proteins. UK patent application GB 2188526 A1; Coolbear, K.P., Elgar, D.F., Ayers, J.S., Profiling of genetic variants of bovine κ-casein macropeptide by electrophoretic and chromatographic techniques (1996) International Dairy Journal, 6, pp. 1055-1068
  • Farías, M.E., Martinez, M.J., Pilosof, A.M.R., Casein glycomacropeptide pH dependent self-assembly and cold gelation (2010) International Dairy Journal, 20, pp. 79-88
  • Kreuß, M., Krause, I., Kulozik, U., Influence of glycosylation on foaming properties of bovine caseinomacropeptide (2009) International Dairy Journal, 19 (12), pp. 715-720
  • Kreuß, M., Strixner, T., Kulozik, U., The effect of glycosylation on the interfacial properties of bovine caseinomacropeptide (2009) Food Hydrocolloids, 23 (7), pp. 1818-1826
  • Lieske, B., Konrad, G., Kleinschmidt, T.H., Isolation of caseinomacropeptide from rennet whey by a multi-stage ultrafiltration process. II. Influence of pH and heating on the carbohydrate moiety of glycomacropeptide (2004) Milchwissenschaft, 59, pp. 291-294
  • Martin Diana, A.B., Fraga, M.J., Fontecha, J., Isolation and characterization of caseinmacropeptide from bovine, ovine, and caprine cheese whey (2002) European Food Research and Technology, 214, pp. 282-286
  • Martinez, M.J., Carrera Sanchez, C., Rodríguez Patino, J.M., Pilosof, A.M.R., Bulk and interfacial behaviour of caseinoglycomacropeptide (GMP) (2009) Colloids and Surfaces B: Biointerfaces, 71, pp. 230-237
  • Martinez, M.J., Farías, M.E., Pilosof, A.M.R., The dynamics of gelation of casein glycomacropeptide-β-lactoglobulin mixtures as affected by interactions in the aqueous phase (2010) International Dairy Journal, 20, pp. 580-588
  • Maubois, J.L., Laits et produits laitiers en alimentation humaine: apports des procédés technologiques (2008) Bulletin de I'Académie Nationale de Médecine, 192 (4), pp. 703-711
  • Mikkelsen, T., FrØkiœr, C., Topp, C., Bonomi, F., Iametti, S., Picariello, G., Caseinomacropeptide self-association is dependent on whether the peptide is free or restricted in κ-casein (2005) Journal of Dairy Science, 88, pp. 4228-4238
  • Mollé, D., Leonil, J., Quantitative determination of bovine κ-casein macropeptide in dairy products by liquid chromatography/electrospray coupled to mass spectrometry (LC-ESI/MS) and liquid chromatography/electrospray coupled to tandem mass spectrometry (LS-ESI/MS/MS) (2005) International Dairy Journal, 15, pp. 419-428
  • Moreno, F.J., López Fandiño, R., Olano, A., Characterization and functional properties of lactosyl caseinomacropeptide conjugates (2002) Journal of Agricultural and Food Chemistry, 50, pp. 5179-5184
  • Relkin, P., Meylheuc, T., Launay, B., Raynal, K., Heat-induced gelation of globular protein mixtures. A DSC and scanning electron microscopic study (1998) Journal of Thermal Analysis, 51, pp. 747-755
  • Thöma Worringer, C., Siegert, N., Kulozik, U., Foaming properties of caseinomacropeptide - 2. Impact on pH and ionic strength (2007) Milchwissenschaft, 62 (3), pp. 253-255
  • Thomä-Worringer, C., Sørensen, J., López Fandiño, R., Health effects and technological features of caseinomacropeptide (2006) International Dairy Journal, 16, pp. 1324-1333
  • Tolkach, A., Kulozik, U., Fractionation of whey proteins and caseinomacropeptide by means of enzymatic crosslinking and membrane separation techniques (2005) Journal of Food Engineering, 67, pp. 13-20
  • Wang, Q., (2007), Application of low-intensity ultrasound to characterise the microstructure of model food systems. Vol. PhD thesis, Technischen Universität München, Germany

Citas:

---------- APA ----------
Martinez, M.J., Farías, M.E. & Pilosof, A.M.R. (2011) . Casein glycomacropeptide pH-driven self-assembly and gelation upon heating. Food Hydrocolloids, 25(5), 860-867.
http://dx.doi.org/10.1016/j.foodhyd.2010.08.005
---------- CHICAGO ----------
Martinez, M.J., Farías, M.E., Pilosof, A.M.R. "Casein glycomacropeptide pH-driven self-assembly and gelation upon heating" . Food Hydrocolloids 25, no. 5 (2011) : 860-867.
http://dx.doi.org/10.1016/j.foodhyd.2010.08.005
---------- MLA ----------
Martinez, M.J., Farías, M.E., Pilosof, A.M.R. "Casein glycomacropeptide pH-driven self-assembly and gelation upon heating" . Food Hydrocolloids, vol. 25, no. 5, 2011, pp. 860-867.
http://dx.doi.org/10.1016/j.foodhyd.2010.08.005
---------- VANCOUVER ----------
Martinez, M.J., Farías, M.E., Pilosof, A.M.R. Casein glycomacropeptide pH-driven self-assembly and gelation upon heating. Food Hydrocolloids. 2011;25(5):860-867.
http://dx.doi.org/10.1016/j.foodhyd.2010.08.005