Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Thermostability and gelation of the main proteins of whey, α-lactalbumin (α-lac) and β-lactoglobulin (β-lg) recovered by selective complexation with carboxymethylcellulose (CMC) was studied to evaluate its functionality in food systems. Their behavior was compared to the non-complexed proteins. Both complexes showed a maximum stability at pH 4, that is close to the pH of obtention of β-lg/CMC coacervate (pH 4) and α-lac/CMC coacervate (pH 3.2). Protein complexation increased the thermostability of β-lg by approximately 6-8 °C and that of α-lac by approximately 26 °C due to immobilization of protein molecules in a complex, mainly by electrostatic interactions and because of different amounts of bound polysaccharide. The denaturation enthalpy of complexed proteins markedly decreased as compared to free proteins. Storage modulus (G′) and loss modulus (G″) were recorded to reflect the structure development during heating β-lg/CMC and α-lac/CMC complexes at different pH values. β-lg/CMC complex at 20 wt% was a viscoelastic liquid at pH values within 2 and 8 but upon heating turned to a particulate viscoelastic gel. However, α-lac/CMC complex formed before heating opaque, large visible white particulate aggregates that sticked together to give a solid viscoelastic structure that was not further modified by thermal processing. © 2006 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Influence of complexing carboxymethylcellulose on the thermostability and gelation of α-lactalbumin and β-lactoglobulin
Autor:Capitani, C.; Pérez, Oscar.E.; Pacheco, B.; Teresa, M.; Pilosof, A.M.R.
Filiación:Facultade de Ciencias Farmaceuticas, Universidade de Sao Paulo, Cidade Universitaria, Sao Paulo, Brazil
Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Members of Consejo Nacional de Investigaciones Cientificas y Tecnicas de la Republica, Argentina
Instituto de Tecnología de Alimentos, Centro de Química e Nutricao Aplicada, Campinas, SP, Brazil
Palabras clave:Coacervate; Denaturation; Differential scanning calorimetry; Gels; Protein polysaccharide interactions
Año:2007
Volumen:21
Número:8
Página de inicio:1344
Página de fin:1354
DOI: http://dx.doi.org/10.1016/j.foodhyd.2006.10.022
Título revista:Food Hydrocolloids
Título revista abreviado:Food Hydrocolloids
ISSN:0268005X
CODEN:FOHYE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0268005X_v21_n8_p1344_Capitani

Referencias:

  • Aguilera, J.M., Xiong, Y.L., Kinsella, J.E., Viscoelastic properties of mixed dairy gels (1993) Food Research International, 26, pp. 11-17
  • Baeza, R.I., Pilosof, A.M.R., Calorimetric studies of thermal denaturation of β-lactoglobulin in the presence of polysaccharides (2002) Lebensmittel Wissenschaft u-Technologie, 35, pp. 393-399
  • Bernal, V., Jelen, P., Thermal stability of whey proteins-a calorimetric study (1985) Journal of Dairy Science, 68, pp. 2847-2852
  • Bollag, D.M., Edelstein, S.J., Gel electrophoresis under denaturing conditions (1991) Protein methods, pp. 95-141. , Bollag D.M., and Edelstein S.J. (Eds), Wiley-Liss, Inc, New York
  • Boye, J.I., Alli, I., Thermal denaturation of mixtures of α-lactalbumin and β-lactoglobulin: A differential scanning calorimetric study (2000) Food Research International, 33, pp. 673-682
  • Boye, J.I., Kalab, M., Alli, I., Ma, Y.C., Microstructural properties of heat-set whey protein gels: Effect of pH (2000) Lebensmittel Wissenschaft u-Technologie, 33, pp. 165-172
  • Brew, K., Grobler, J.A., α-lactalbumin (1992) Advanced dairy chemistry. Proteins, pp. 191-229. , Fox P.F. (Ed), ElsevierApplied Science, Essex
  • Bungenberg de Jong, H.G., Crystallisation-coacervation-flocculation (1949) Colloid science, 2, pp. 232-258. , Kruyt H.R. (Ed), Elsevier Publishing Company, Amsterdam
  • Burova, T.V., Varfolomeeva, E.P., Grinberg, V.E.P., Haertle, T., Tolstoguzov, V.B., Effect of polysaccharides on the stability and renaturation of soybean trypsin (Kunitz) inhibitor (2002) Macromolecular Bioscience, 2 (6), pp. 286-292
  • Calvo, S., Leaver, J., Banks, J.M., Influence of other whey proteins on the heat-induced aggregation of α-lactalbumin (1993) International Dairy Journal, 3, pp. 719-727
  • de Wit, J.L., Klarenbeek, G., Effects of various heat treatments on structure and solubility of whey proteins (1984) Journal of Dairy Science, 67, pp. 2701-2710
  • Delben, F., Stefancich, S., Interaction of food proteins with polysaccharides, I. Properties upon mixing (1997) Journal of Food Engineering, 31, pp. 325-346
  • Gezimati, J., Creamer, L.K., Singh, H., Heat-induced interactions and gelation of mixtures of β-lactoglobulin and α-lactalbumin (1997) Journal of Agriculture Food Chemistry, 45, pp. 1130-1136
  • Girard, M., Turgeon, S.L., Paquin, P., Emulsifying properties of whey protein-carboxymethylcellulose complexes (2002) Journal of Food Science, 67 (1), pp. 113-119
  • Hansen, P.M., Hidaldo, J., Gould, I.A., Reclamation of whey protein with carboxymethylcellulose (1971) Journal of Dairy Science, 54, pp. 830-834
  • Hansen, P.M.T., Black, D.H., Whipping properties of spray-dried complexes from whey protein and carboxymethylcellulose (1972) Journal of Food Science, 37, pp. 452-456
  • Hattori, M., Aiba, Y., Nagasawa, K., Takashi, K., Functional improvement of alginic acid by conjugating with beta-lactoglobulin (1996) Journal of Food Science, 61 (6), pp. 1171-1176
  • Hattori, M., Nagasawa, K., Ametani, A., Kaminogawa, S., Functional changes in beta-lactoglobulin by conjugation with carboxymethyl dextran (1994) Journal of Agriculture Food Chemistry, 42, pp. 2120-2125
  • Hattori, M., Ogino, A., Nakai, H., Functional improvement of β-lactoglobulin by conjugating with alginate lyase-lysate (1997) Journal of Agriculture Food Chemistry, 45, pp. 703-708
  • Havea, P., Singh, H., Creamer, L.K., Formation of new protein structures in heated mixtures of BSA and α-lactalbumin (2000) Journal of Agriculture Food Chemistry, 48, pp. 1548-1556
  • Hidalgo, J., Hansen, M.T., Selective precipitation of whey proteins with carboxymethylcellulose (1971) Journal of Dairy Science, 54 (9). , [1270-17-1274]
  • Hoffmann, M.A.M., Van Mil, P.J.J.M., Heat-induced aggregation of β-lactoglobulin: As a function of pH (1999) Journal of Agricultural Food Chemistry, 47, pp. 1898-1905
  • Hoffmann, M.A.M., Van Mil, P.J.J.M., de Kruif, K., Thermal denaturation and aggregation of β-lactoglobulin studied by differential scanning calorimetry (1995) Food macromolecules and colloids, pp. 171-177. , Dickinson E., and Lorient D. (Eds), The Royal Society of Chemistry, Cambridge
  • Iametti, S., De Gregori, B., Vecchio, G., Bonomi, F., Modifications occur at different structural levels during the heat-denaturation of β-lactoglobulin (1996) European Journal of Biochemistry, 237, pp. 106-112
  • Ivinova, O., Izumrudov, V.A., Muronetz, V.I., Galaev, I.Y., Mattiasson, B., Influence of compelling polyanions on the thermostability of basic protein (2003) Macromolecular Bioscience, 3 (3-4), pp. 210-215
  • Kronman, M.J., Cerankow, L., Holmes, L.G., Inter- and intramolecular interactions of α-lactalbumin. 3. Spectral changes at acid pH (1965) Journal of Biochemistry, 4, pp. 518-523
  • Kuwajima, K., Ikeguchi, M., Sugawara, T., Hiroka, Y., Sugai, S., Kinetics of disulfide bond reduction in α-lactalbumin by dithiotreitol and molecular basis of superreactivity of the Cys6-Cys120 disulfide bond (1990) Biochemistry, 29, pp. 8240-8249
  • Kuwajima, K., Ogawa, Y., Sugai, S., Role of the interactions between ionizable groups in the folding of bovine α-lactalbumin (1981) Journal of Biochemistry, 89, pp. 759-770
  • Laemmli, U.K., Cleavage of structural proteins during the assembly of head of bacteriophague T4 (1970) Nature, 227, pp. 680-687
  • Liu, T., Relkin, P., Launay, B., Thermal denaturation and heat-induced gelation of β-lactoglobulin. Effects of some chemical parameters (1994) Thermochimica Acta, 246, pp. 387-403
  • Mann, B., Malik, R.C., Studies on some functional characteristics of whey protein-polysaccharide complex (1996) Journal of Food Science and Technology, 33 (3), pp. 202-206
  • Mc Kenzie, H.A., Sawyer, W.H., Effect of pH on β-lactoglobulin (1967) Nature, 214, pp. 1101-1104
  • Mulvihill, D.M., Donovan, M., Whey proteins and their thermal denaturation. A review (1987) Irish Journal of Food Science and Technology, 11, pp. 43-75
  • Nagasawa, K., Ohgata, K., Takahashi, K., Hattori, M., Role of the polysaccharide content and net charge on the emulsifying properties of β-lactoglobulin-carboxymethyldextran conjugates (1996) Journal of Agriculture Food Chemistry, 44, pp. 2538-2543
  • Nagasawa, K., Takahashi, K., Hattori, M., Improved emulsifying properties of β-lactoglobulin by conjugating with carboxymethyl dextran (1996) Food Hydrocolloids, 10, pp. 63-67
  • Paulsson, M., Hegg, P.O., Castberg, H.B., Thermal stability of whey proteins studied by differential scanning calorimetry (1985) Thermochimica Acta, 95 (2), pp. 435-440
  • Relkin, P., Differential scanning calorimetry: A useful tool for studying protein denaturation (1994) Thermochimica Acta, 246, pp. 371-386
  • Relkin, P., Thermal unfolding of β-lactoglobulin, α-lactalbumin and bovine sero-albumin. A thermodynamic approach (1996) Critical Reviews in Food Science and Nutrition, 36, pp. 565-601
  • Relkin, P., Launay, B., Eynard, L., Effect of sodium and calcium addition on thermal denaturation of apo α-lactalbumin: A differential scanning calorimetric study (1993) Journal of Dairy Science, 76, pp. 36-47
  • Rojas, A.S., Goff, H.D., Senaratne, V., Dalgliesh, D.G., Flores, A., Gelation of commercial fractions of β-lactoglobulin and α-lactalbumin (1997) International Dairy Journal, 7, pp. 79-85
  • Ross, Y., Karel, M., Phase transitions of mixtures of amorphous polysaccharides and sugars (1991) Biotechnology Progress, 7, pp. 49-53
  • Ruegg, M., Moor, V., Blanc, B., A calorimetric study of thermal denaturation of whey proteins in simulated milk ultrafiltrate (1977) Journal of Dairy Research, 44, pp. 500-520
  • Schmitt, C., Sanchez, C., Desobry-Banon, S., Hardy, J., Structure and technofunctional properties of protein-polisaccharides complexes: A review (1998) Critical Reviews in Food Science and Nutrition, 38 (8), pp. 689-753
  • Schokker, E.P., Singh, H., Creamer, L.K., Heat-induced aggregation of β-lactoglobulin a and b with α-lactalbumin (2000) International Dairy Journal, 10, pp. 843-853
  • Serov, A.V., Antonov, Y., Tolstoguzov, V.B., Isolation of lactic whey proteins in the form of complexes with apple pectin (1985) Nahrung, 1, pp. 19-30
  • Shukla, T.P., Chemistry and biological function of α-lactalbumin (1973) CRC Press Critical Reviews in Food Technology, 3, pp. 241-312
  • Stading, M., Hermansson, A.M., Viscoelastic behaviour of β-lactoglobulin gel structure (1990) Food Hydrocolloids, 4, pp. 121-153
  • Takahashi, K., Lou, X.F., Ishii, Y., Hattori, M., Lysozyme-glucose stearic acid monoester conjugate formed through the Maillard reaction as an antibacterial emulsifier (2000) Journal of Agriculture Food Chemistry, 48, pp. 2044-2049
  • Tolstoguzov, V.B., Functional properties of protein-polysaccharide mixtures (1998) Functional properties of food macromolecules. 2nd ed., pp. 252-277. , Hill S.E., Ledward D.A., and Mitchell J.R. (Eds), Aspen Publishers Inc., Maryland
  • Tolstoguzov, V.B., Grinberg, V.Y., Gurov, A.N., Some physicochemical approaches to the problem of protein texturization (1985) Journal of Agriculture Food Chemistry, 33, pp. 151-159
  • Verheul, M., Roefs, S., de Kruif, K., Kinetics of heat induced aggregation of β-lactoglobulin (1998) Journal of Agriculture Food Chemistry, 46, pp. 896-903
  • Vikelouda, M., Kiosseoglou, V., The use of carboxymethylcellulose to recover potato proteins and control their functional properties (2004) Food Hydrocolloids, 18, pp. 21-27

Citas:

---------- APA ----------
Capitani, C., Pérez, Oscar.E., Pacheco, B., Teresa, M. & Pilosof, A.M.R. (2007) . Influence of complexing carboxymethylcellulose on the thermostability and gelation of α-lactalbumin and β-lactoglobulin. Food Hydrocolloids, 21(8), 1344-1354.
http://dx.doi.org/10.1016/j.foodhyd.2006.10.022
---------- CHICAGO ----------
Capitani, C., Pérez, Oscar.E., Pacheco, B., Teresa, M., Pilosof, A.M.R. "Influence of complexing carboxymethylcellulose on the thermostability and gelation of α-lactalbumin and β-lactoglobulin" . Food Hydrocolloids 21, no. 8 (2007) : 1344-1354.
http://dx.doi.org/10.1016/j.foodhyd.2006.10.022
---------- MLA ----------
Capitani, C., Pérez, Oscar.E., Pacheco, B., Teresa, M., Pilosof, A.M.R. "Influence of complexing carboxymethylcellulose on the thermostability and gelation of α-lactalbumin and β-lactoglobulin" . Food Hydrocolloids, vol. 21, no. 8, 2007, pp. 1344-1354.
http://dx.doi.org/10.1016/j.foodhyd.2006.10.022
---------- VANCOUVER ----------
Capitani, C., Pérez, Oscar.E., Pacheco, B., Teresa, M., Pilosof, A.M.R. Influence of complexing carboxymethylcellulose on the thermostability and gelation of α-lactalbumin and β-lactoglobulin. Food Hydrocolloids. 2007;21(8):1344-1354.
http://dx.doi.org/10.1016/j.foodhyd.2006.10.022