The authors apply the Melnikov method for identifying chaos in near integrable systems to relativistic particle motion around a Schwarzschild black hole. They start by giving a self-contained introduction to the Melnikov method together with some relevant background on dynamical systems. Then they show that a relativistic particle was unstable circular orbits around a Schwarzschild black hole, and that each one of these gives rise to a homoclinic orbit in phase space, which tends to the unstable one for t to +or- infinity . Finally, the authors use the Melnikov method to conclude that, under most periodic perturbations of the black-hole metric, the homoclinic orbit becomes chaotic.
| Documento: | Artículo |
| Título: | Chaos around a black hole |
| Autor: | Bombelli, L.; Calzetta, E. |
| Filiación: | RGGR, Universite Libre de Bruxelles, Campus Plaine CP 231, 1050 Brussels, Belgium Instituto de Astronomia y Fisica Del Espacio Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires, Argentina |
| Año: | 1992 |
| Volumen: | 9 |
| Número: | 12 |
| Página de inicio: | 2573 |
| Página de fin: | 2599 |
| DOI: | http://dx.doi.org/10.1088/0264-9381/9/12/004 |
| Título revista: | Classical and Quantum Gravity |
| ISSN: | 02649381 |
| Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02649381_v9_n12_p2573_Bombelli |