Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

PKA (cAMP-dependent protein kinase) activity, as well as that of other AGC members, is regulated by multiple phosphorylations of its catalytic subunits. In Saccharomyces cerevisiae, the PKA regulatory subunit is encoded by the gene BCY1, and the catalytic subunits are encoded by three genes: TPK1, TPK2 and TPK3. Previously,we have reported that, following cAMP/PKA pathway activation, Tpk1 increases its phosphorylation status. Now, in vivo genetic and in vitro experiments indicate an autophosphorylation mechanism for Tpk1. Using array peptides derived from Tpk1, we identified Ser179 as a target residue. Tpk1 is phosphorylated on Ser179 in vivo during glucose stimulus. Reduction of the activation loop Thr241 phosphorylation increases Ser179 autophosphorylation. To evaluate the role of phosphorylation on Ser 179, wemade strains expressing tpk1S179A or tpk1 S179D as the sole PKA kinase source. Our results suggest that Ser179 phosphorylation increases the reactivity towards the substrate without affecting the formation of the holoenzyme. Phenotypic readout analysis showed that Ser179 phosphorylation increases in vivo PKA activity, reducingcell survival, stress and lifespan. Ser179 phosphorylation increases Tpk1 cytoplasmic accumulation in glucose-grown cells. These results describe for the first time that an autophosphorylation mechanism on Tpk1 controls PKA activity in response to glucose availability. © 2014 Biochemical Society.

Registro:

Documento: Artículo
Título:Regulation of PKA activity by an autophosphorylation mechanism in Saccharomyces cerevisiae
Autor:Solari, C.A.; Tudisca, V.; Pugliessi, M.; Nadra, A.D.; Moreno, S.; Portela, P.
Filiación:Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:CAMP-dependent protein kinase (PKA); Phosphorylation; Saccharomyces cerevisiae; Tpk1; cyclic AMP dependent protein kinase; glucose; holoenzyme; article; autophosphorylation; cell stress; cell survival; controlled study; enzyme activation; enzyme active site; enzyme phosphorylation; enzyme regulation; in vitro study; in vivo study; nonhuman; priority journal; Saccharomyces cerevisiae; Catalytic Domain; Cyclic AMP-Dependent Protein Kinases; Fermentation; Glucose; Phosphorylation; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Serine
Año:2014
Volumen:462
Número:3
Página de inicio:567
Página de fin:579
DOI: http://dx.doi.org/10.1042/BJ20140577
Título revista:Biochemical Journal
Título revista abreviado:Biochem. J.
ISSN:02646021
CODEN:BIJOA
CAS:cyclic AMP dependent protein kinase; glucose, 50-99-7, 84778-64-3
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02646021_v462_n3_p567_Solari

Referencias:

  • Taylor, S.S., Zhang, P., Steichen, J.M., Keshwani, M.M., Kornev, A.P., PKA: Lessons learned after twenty years (2013) Biochim. Biophys. Acta, 1834, pp. 1271-1278
  • Keshwani, M.M., Klammt, C., Von Daake, S., Ma, Y., Kornev, A.P., Choe, S., Insel, P.A., Taylor, S.S., Cotranslational cis-phosphorylation of the COOH-terminal tail is a key priming step in the maturation of cAMP-dependent protein kinase (2012) Proc. Natl. Acad. Sci. U.S.A., 109, pp. 1221-1229
  • Cheng, X., Ma, Y., Moore, M., Hemmings, B.A., Taylor, S.S., Phosphorylation and activation of cAMP-dependent protein kinase by phosphoinositide-dependent protein kinase (1998) Proc. Natl. Acad. Sci. U.S.A., 95, pp. 9849-9854
  • Williams, M.R., Arthur, J.S., Balendran, A., Van Der Kaay, J., Poli, V., Cohen, P., Alessi, D.R., The role of 3-phosphoinositide-dependent protein kinase in activating AGC kinases defined in embryonic stem cells (2000) Curr. Biol., 10, pp. 439-448
  • Voordeckers, K., Kimpe, M., Haesendonckx, S., Louwet, W., Versele, M., Thevelein, J.M., Yeast 3-phosphoinositide-dependent protein kinase-1 (PDK1) orthologs Pkh1-3 differentially regulate phosphorylation of protein kinase A (PKA) and the protein kinase B (PKB)/S6K ortholog Sch9 (2011) J. Biol. Chem., 286, pp. 22017-22027
  • Haesendonckx, S., Tudisca, V., Voordeckers, K., Moreno, S., Thevelein, J.M., Portela, P., The activation loop of PKA catalytic isoforms is differentially phosphorylated by Pkh protein kinases in Saccharomyces cerevisiae (2012) Biochem. J., 448, pp. 307-320
  • Thevelein, J.M., Fermentable sugars and intracellular acidification as specific activators of the RAS-adenylate cyclase signalling pathway in yeast: The relationship to nutrient-induced cell cycle control (1991) Mol. Microbiol., 5, pp. 1301-1307
  • Rolland, F., De Winde, J.H., Lemaire, K., Boles, E., Thevelein, J.M., Winderickx, J., Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process (2000) Mol. Microbiol., 38, pp. 348-358
  • Lu, A., Hirsch, J.P., Cyclic AMP-independent regulation of protein kinase A substrate phosphorylation by Kelch repeat proteins (2005) Eukaryot. Cell, 4, pp. 1794-1800
  • Peeters, T., Louwet, W., Gelade, R., Nauwelaers, D., Thevelein, J.M., Versele, M., Kelch-repeat proteins interacting with the Ga protein Gpa2 bypass adenylate cyclase for direct regulation of protein kinase A in yeast (2006) Proc. Natl. Acad. Sci. U.S.A., 103, pp. 13034-13039
  • Budhwar, R., Lu, A., Hirsch, J.P., Nutrient control of yeast PKA activity involves opposing effects on phosphorylation of the Bcy1 regulatory subunit (2010) Mol. Biol. Cell, 21, pp. 3749-3758
  • Budhwar, R., Fang, G., Hirsch, J.P., Kelch repeat proteins control yeast PKA activity in response to nutrient availability (2011) Cell Cycle, 10, pp. 767-770
  • Ma, P., Wera, S., Van Dijck, P., Thevelein, J.M., The PDE1-encoded low-affinity phosphodiesterase in the yeast Saccharomyces cerevisiae has a specific function in controlling agonist-induced cAMP signaling (1999) Mol. Biol. Cell, 10, pp. 91-104
  • Hu, Y., Liu, E., Bai, X., Zhang, A., The localization and concentration of the PDE2-encoded high-affinity cAMP phosphodiesterase is regulated by cAMP-dependent protein kinase A in the yeast Saccharomyces cerevisiae (2010) FEMS Yeast Res., 10, pp. 177-187
  • Durnez, P., Pernambuco, M.B., Oris, E., Arguelles, J.C., Mergelsberg, H., Thevelein, J.M., Activation of trehalase during growth induction by nitrogen sources in the yeast Saccharomyces cerevisiae depends on the free catalytic subunits of cAMP-dependent protein kinase, but not on functional Ras proteins (1994) Yeast, 10, pp. 1049-1064
  • Thevelein, J.M., Bonini, B.M., Castermans, D., Haesendonckx, S., Kriel, J., Louwet, W., Thayumanavan, P., Schepers, W., Novel mechanisms in nutrient activation of the yeast protein kinase A pathway (2008) Acta Microbiol Immunol. Hung., 55, pp. 75-89
  • Thevelein, J.M., Cauwenberg, L., Colombo, S., De Winde, J.H., Donation, M., Dumortier, F., Kraakman, L., Nauwelaers, D., Nutrient-induced signal transduction through the protein kinase A pathway and its role in the control of metabolism, stress resistance, and growth in yeast (2000) Enzyme Microb. Technol., 26, pp. 819-825
  • Griffioen, G., Anghileri, P., Imre, E., Baroni, M.D., Ruis, H., Nutritional control of nucleocytoplasmic localization of cAMP-dependent protein kinase catalytic and regulatory subunits in Saccharomyces cerevisiae (2000) J. Biol. Chem., 275, pp. 1449-1456
  • Zhang, A., Shen, Y., Gao, W., Dong, J., Role of Sch9 in regulating Ras-cAMP signal pathway in Saccharomyces cerevisiae (2011) FEBS Lett., 585, pp. 3026-3032
  • Tudisca, V., Recouvreux, V., Moreno, S., Boy-Marcotte, E., Jacquet, M., Portela, P., Differential localization to cytoplasm, nucleus or P-bodies of yeast PKA subunits under different growth conditions (2010) Eur. J. Cell Biol., 89, pp. 339-348
  • Tudisca, V., Simpson, C., Castelli, L., Lui, J., Hoyle, N., Moreno, S., Ashe, M., Portela, P., PKA isoforms coordinate mRNA fate during nutrient starvation (2012) J. Cell Sci., 125, pp. 5221-5232
  • Portela, P., Moreno, S., Glucose-dependent activation of protein kinase A activity in Saccharomyces cerevisiae and phosphorylation of its TPK1 catalytic subunit (2006) Cell. Signal., 18, pp. 1072-1086
  • Ito, H., Fukuda, Y., Murata, K., Kimura, A., Transformation of intact yeast cells treated with alkali cations (1983) J. Bacteriol., 153, pp. 163-168
  • Muhlrad, D., Hunter, R., Parker, R., A rapid method for localized mutagenesis of yeast genes (1992) Yeast, 8, pp. 79-82
  • Huh, W.K., Falvo, J.V., Gerke, L.C., Carroll, A.S., Howson, R.W., Weissman, J.S., O'Shea, E.K., Global analysis of protein localization in budding yeast (2003) Nature, 425, pp. 686-691
  • Portela, P., Howell, S., Moreno, S., Rossi, S., In vivo and in vitro phosphorylation of two isoforms of yeast pyruvate kinase by protein kinase (2002) A. J. Biol. Chem., 277, pp. 30477-30487
  • Puig, O., Caspary, F., Rigaut, G., Rutz, B., Bouveret, E., Bragado-Nilsson, E., Wilm, M., Seraphin, B., The tandem affinity purification (TAP) method: A general procedure of protein complex purification (2001) Methods, 24, pp. 218-229
  • Galello, F., Portela, P., Moreno, S., Rossi, S., Characterization of substrates that have a differential effect on Saccharomyces cerevisiae protein kinase A holoenzyme activation (2010) J. Biol. Chem., 285, pp. 29770-29779
  • Roskoski, Jr.R., Assays of protein kinase (1983) Methods Enzymol., 99, pp. 3-6
  • Chester, V.E., Heritable glycogen-storage deficiency in yeast and its induction by ultra-violet light (1968) J. Gen. Microbiol., 51, pp. 49-56
  • Mirisola, M.G., Braun, R.J., Petranovic, D., Approaches to study yeast cell aging and death (2013) FEMS Yeast Res., , doi:10.1111/1567-1364.12112
  • Thevelein, J.M., Beullens, M., Honshoven, F., Hoebeeck, G., Detremerie, K., Griewel, B., Den Hollander, J.A., Jans, A.W., Regulation of the cAMP level in the yeast Saccharomyces cerevisiae: The glucose-induced cAMP signal is not mediated by a transient drop in the intracellular pH (1987) J. Gen. Microbiol., 133, pp. 2197-2205
  • Gibbs, C.S., Knighton, D.R., Sowadski, J.M., Taylor, S.S., Zoller, M.J., Systematic mutational analysis of cAMP-dependent protein kinase identifies unregulated catalytic subunits and defines regions important for the recognition of the regulatory subunit (1992) J. Biol. Chem., 267, pp. 4806-4814
  • Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F., Serrano, L., The FoldX web server: An online force field (2005) Nucleic Acids Res., 33, pp. W382-W388
  • Soulard, A., Cremonesi, A., Moes, S., Schutz, F., Jeno, P., Hall, M.N., The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates (2010) Mol. Biol. Cell, 21, pp. 3475-3486
  • Fabrizio, P., Pozza, F., Pletcher, S.D., Gendron, C.M., Longo, V.D., Regulation of longevity and stress resistance by Sch9 in yeast (2001) Science, 292, pp. 288-290
  • Longo, V.D., Fabrizio, P., Chronological aging in Saccharomyces cerevisiae (2012) Subcell. Biochem., 57, pp. 101-121
  • Roberts, E., Eargle, J., Wright, D., Luthey-Schulten, Z., MultiSeq: Unifying sequence and structure data for evolutionary analysis (2006) BMC Bioinformatics, 7, p. 382
  • Thevelein, J.M., De Winde, J.H., Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae (1999) Mol. Microbiol., 33, pp. 904-918
  • Masterson, L.R., Cheng, C., Yu, T., Tonelli, M., Kornev, A., Taylor, S.S., Veglia, G., Dynamics connect substrate recognition to catalysis in protein kinase A (2010) Nat. Chem. Biol., 6, pp. 821-828
  • Karlsson, R., Madhusudan Taylor, S.S., Sowadski, J.M., Intermolecular contacts in various crystal forms related to the open and closed conformational states of the catalytic subunit of cAMP-dependent protein kinase (1994) Acta Crystallogr. D Biol. Crystallogr., 50, pp. 657-662
  • Nirula, A., Ho, M., Phee, H., Roose, J., Weiss, A., Phosphoinositide-dependent kinase targets protein kinase A in a pathway that regulates interleukin 4 (2006) J. Exp. Med., 203, pp. 1733-1744
  • Cauthron, R.D., Carter, K.B., Liauw, S., Steinberg, R.A., Physiological phosphorylation of protein kinase A at Thr-197 is by a protein kinase A kinase (1998) Mol. Cell. Biol., 18, pp. 1416-1423
  • Castermans, D., Somers, I., Kriel, J., Louwet, W., Wera, S., Versele, M., Janssens, V., Thevelein, J.M., Glucose-induced posttranslational activation of protein phosphatases PP2A and PP1 in yeast (2012) Cell Res., 22, pp. 1058-1077
  • Yonemoto, W., McGlone, M.L., Grant, B., Taylor, S.S., Autophosphorylation of the catalytic subunit of cAMP-dependent protein kinase in Escherichia coli (1997) Protein Eng., 10, pp. 915-925
  • Santangelo, G.M., Glucose signaling in Saccharomyces cerevisiae (2006) Microbiol. Mol. Biol. Rev., 70, pp. 253-282
  • Tamaki, H., Glucose-stimulated cAMP-protein kinase A pathway in yeast Saccharomyces cerevisiae (2007) J. Biosci. Bioeng., 104, pp. 245-250
  • Gancedo, J.M., The early steps of glucose signalling in yeast (2008) FEMS Microbiol. Rev., 32, pp. 673-704
  • Griffioen, G., Branduardi, P., Ballarini, A., Anghileri, P., Norbeck, J., Baroni, M.D., Ruis, H., Nucleocytoplasmic distribution of budding yeast protein kinase A regulatory subunit Bcy1 requires Zds1 and is regulated by Yak1-dependent phosphorylation of its targeting domain (2001) Mol. Cell. Biol., 21, pp. 511-523
  • Voordeckers, K., Kimpe, M., Haesendonckx, S., Louwet, W., Versele, M., Thevelein, J.M., Yeast 3-phosphoinositide-dependent protein kinase-1 (PDK1) orthologs Pkh1-3 differentially regulate phosphorylation of protein kinase A (PKA) and the protein kinase B (PKB)/S6K ortholog Sch9 (2011) J. Biol. Chem., 286, pp. 22017-22027
  • Bolte, M., Dieckhoff, P., Krause, C., Braus, G.H., Irniger, S., Synergistic inhibition of APC/C by glucose and activated Ras proteins can be mediated by each of the Tpk1-3 proteins in Saccharomyces cerevisiae (2003) Microbiology, 149, pp. 1205-1216
  • Inagaki, M., Schmelzle, T., Yamaguchi, K., Irie, K., Hall, M.N., Matsumoto, K., PDK1 homologs activate the Pkc1-mitogen-activated protein kinase pathway in yeast (1999) Mol. Cell. Biol., 19, pp. 8344-8352

Citas:

---------- APA ----------
Solari, C.A., Tudisca, V., Pugliessi, M., Nadra, A.D., Moreno, S. & Portela, P. (2014) . Regulation of PKA activity by an autophosphorylation mechanism in Saccharomyces cerevisiae. Biochemical Journal, 462(3), 567-579.
http://dx.doi.org/10.1042/BJ20140577
---------- CHICAGO ----------
Solari, C.A., Tudisca, V., Pugliessi, M., Nadra, A.D., Moreno, S., Portela, P. "Regulation of PKA activity by an autophosphorylation mechanism in Saccharomyces cerevisiae" . Biochemical Journal 462, no. 3 (2014) : 567-579.
http://dx.doi.org/10.1042/BJ20140577
---------- MLA ----------
Solari, C.A., Tudisca, V., Pugliessi, M., Nadra, A.D., Moreno, S., Portela, P. "Regulation of PKA activity by an autophosphorylation mechanism in Saccharomyces cerevisiae" . Biochemical Journal, vol. 462, no. 3, 2014, pp. 567-579.
http://dx.doi.org/10.1042/BJ20140577
---------- VANCOUVER ----------
Solari, C.A., Tudisca, V., Pugliessi, M., Nadra, A.D., Moreno, S., Portela, P. Regulation of PKA activity by an autophosphorylation mechanism in Saccharomyces cerevisiae. Biochem. J. 2014;462(3):567-579.
http://dx.doi.org/10.1042/BJ20140577