Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

PDK1 (phosphoinositide-dependent protein kinase 1) phosphorylates and activates PKA (cAMP-dependent protein kinase) in vitro. Docking of the HM (hydrophobic motif) in the C-terminal tail of the PKA catalytic subunits on to the PIF (PDK1-interacting fragment) pocket of PDK1 is a critical step in this activation process. However, PDK1 regulation of PKA in vivo remains controversial. Saccharomyces cerevisiae contains three PKA catalytic subunits, TPK1, TPK2 and TPK3. We demonstrate that Pkh [PKB (protein kinase B)-activating kinase homologue] protein kinases phosphorylate the activation loop of each Tpk in vivo with various efficiencies. Pkh inactivation reduces the interaction of each catalytic subunit with the regulatory subunit Bcy1 without affecting the specific kinase activity of PKA. Comparative analysis of the in vitro interaction and phosphorylation of Tpks by Pkh1 shows that Tpk1 and Tpk2 interact with Pkh1 through an HM-PIF pocket interaction. Unlike Tpk1, mutagenesis of the activation loop site in Tpk2 does not abolish in vitro phosphorylation, suggesting that Tpk2 contains other, as yet uncharacterized, Pkh1 target sites. Tpk3 is poorly phosphorylated on its activation loop site, and this is due to the weak interaction of Tpk3 with Pkh1 because of the atypical HM found in Tpk3. In conclusion, the results of the present study show that Pkh protein kinases contribute to the divergent regulation of the Tpk catalytic subunits. © The Authors Journal compilation © 2012 Biochemical Society.

Registro:

Documento: Artículo
Título:The activation loop of PKA catalytic isoforms is differentially phosphorylated by Pkh protein kinases in Saccharomyces cerevisiae
Autor:Haesendonckx, S.; Tudisca, V.; Voordeckers, K.; Moreno, S.; Thevelein, J.M.; Portela, P.
Filiación:Department of Molecular Biology, University of Geneva, CH-1211, Switzerland
Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
Department of Molecular Microbiology, VIB, Leuven-Heverlee, Flanders, Belgium
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Buenos Aires 1428, Argentina
VIB Laboratory for Systems Biology, Gaston Geenslaan 1, B-3001 Leuven, Belgium
Palabras clave:Bcy1; cAMP-dependent protein kinase (PKA); Phosphoinositide-dependent protein kinase 1 (PDK1); PKB (protein kinase B)-activating kinase homologue (Pkh); Saccharomyces cerevisiae; Tpk; cyclic AMP dependent protein kinase; fungal enzyme; glutathione transferase; hybrid protein; phosphoinositide dependent protein kinase 1; protein kinase B activating kinase homologue; unclassified drug; article; catalysis; culture medium; enzyme activation; enzyme active site; enzyme assay; enzyme phosphorylation; enzyme purification; Escherichia coli; fungus culture; fungus growth; in vitro study; in vivo study; nonhuman; plasmid; polyacrylamide gel electrophoresis; priority journal; protein protein interaction; Saccharomyces cerevisiae; Western blotting; yeast; Amino Acid Motifs; Amino Acid Sequence; Catalytic Domain; Cyclic AMP-Dependent Protein Kinase Catalytic Subunits; Cyclic AMP-Dependent Protein Kinase Type I; Cyclic AMP-Dependent Protein Kinases; Enzyme Activation; Isoenzymes; Molecular Sequence Data; Mutagenesis; Phosphorylation; Protein-Serine-Threonine Kinases; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Saccharomyces cerevisiae
Año:2012
Volumen:448
Número:3
Página de inicio:307
Página de fin:320
DOI: http://dx.doi.org/10.1042/BJ20121061
Título revista:Biochemical Journal
Título revista abreviado:Biochem. J.
ISSN:02646021
CODEN:BIJOA
CAS:glutathione transferase, 50812-37-8; Cyclic AMP-Dependent Protein Kinase Catalytic Subunits, 2.7.11.11; Cyclic AMP-Dependent Protein Kinase Type I, 2.7.11.11; Cyclic AMP-Dependent Protein Kinases, 2.7.11.11; Isoenzymes; PKH1 protein, S cerevisiae, 2.7.11.1; Protein-Serine-Threonine Kinases, 2.7.11.1; Saccharomyces cerevisiae Proteins; TPK2 protein, S cerevisiae, 2.7.1.-; Tpk3 protein, S cerevisiae, 2.7.11.11
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02646021_v448_n3_p307_Haesendonckx

Referencias:

  • Manning, G., Whyte, D.B., Martinez, R., Hunter, T., Sudarsanam, S., The protein kinase complement of the human genome (2002) Science, 298 (5600), pp. 1912-1934. , DOI 10.1126/science.1075762
  • Hanks, S.K., Hunter, T., Protein kinases 6. The eukaryotic protein kinase superfamily: Kinase (catalytic) domain structure and classification (1995) FASEB J., 9, pp. 576-596
  • Johnson, L.N., Noble, M.E.M., Owen, D.J., Active and inactive protein kinases: Structural basis for regulation (1996) Cell, 85 (2), pp. 149-158. , DOI 10.1016/S0092-8674(00)81092-2
  • Casamayor, A., Torrance, P.D., Kobayashi, T., Thorner, J., Alessi, D.R., Functional counterparts of mammalian protein kinases PDK1 and SGK in budding yeast (1999) Current Biology, 9 (4), pp. 186-197. , DOI 10.1016/S0960-9822(99)80088-8
  • Vanhaesebroeck, B., Alessi, D.R., The PI3K-PBK1 connection: More than just a road to PKB (2000) Biochemical Journal, 346 (3), pp. 561-576. , DOI 10.1042/0264-6021:3460561
  • Biondi, R.M., Cheung, P.C.F., Casamayor, A., Deak, M., Currie, R.A., Alessi, D.R., Identification of a pocket in the PDK1 kinase domain that interacts with PIF and the C-terminal residues of PKA (2000) EMBO Journal, 19 (5), pp. 979-988
  • Biondi, R.M., Komander, D., Thomas, C.C., Lizcano, J.M., Deak, M., Alessi, D.R., Van Aalten, D.M., High resolution crystal structure of the human PDK1 catalytic domain defines the regulatory phosphopeptide docking site (2002) EMBO J., 21, pp. 4219-4228
  • Frodin, M., Antal, T.L., Dummler, B.A., Jensen, C.J., Deak, M., Gammeltoft, S., Biondi, R.M., A phosphoserine/threonine-binding pocket in AGC kinases and PDK1 mediates activation by hydrophobic motif phosphorylation (2002) EMBO Journal, 21 (20), pp. 5396-5407. , DOI 10.1093/emboj/cdf551
  • Collins, B.J., Deak, M., Arthur, J.S.C., Armit, L.J., Alessi, D.R., In vivo role of the PIF-binding docking site of PDK1 defined by knock-in mutation (2003) EMBO Journal, 22 (16), pp. 4202-4211. , DOI 10.1093/emboj/cdg407
  • Frodin, M., Jensen, C.J., Merienne, K., Gammeltoft, S., A phosphoserine-regulated docking site in the protein kinase RSK2 that recruits and activates PDK1 (2000) EMBO Journal, 19 (12), pp. 2924-2934
  • Keshwani, M.M., Von Daake, S., Newton, A.C., Harris, T.K., Taylor, S.S., Hydrophobic motif phosphorylation is not required for activation loop phosphorylation of p70 ribosomal protein S6 kinase 1 (S6K1) (2011) J. Biol. Chem., 286, pp. 23552-23558
  • Cheng, X., Ma, Y., Moore, M., Hemmings, B.A., Taylor, S.S., Phosphorylation and activation of cAMP-dependent protein kinase by phosphoinositide-dependent protein kinase (1998) Proceedings of the National Academy of Sciences of the United States of America, 95 (17), pp. 9849-9854. , DOI 10.1073/pnas.95.17.9849
  • Iyer, G.H., Garrod, S., Woods Jr., V.L., Taylor, S.S., Catalytic independent functions of a protein kinase as revealed by a kinase-dead mutant: Study of the Lys72His mutant of cAMP-dependent kinase (2005) Journal of Molecular Biology, 351 (5), pp. 1110-1122. , DOI 10.1016/j.jmb.2005.06.011, PII S0022283605006613
  • Moore, M.J., Kanter, J.R., Jones, K.C., Taylor, S.S., Phosphorylation of the catalytic subunit of protein kinase A: Autophosphorylation versus phosphorylation by phosphoinositide-dependent kinase-1 (2002) Journal of Biological Chemistry, 277 (49), pp. 47878-47884. , DOI 10.1074/jbc.M204970200
  • Williams, M.R., Arthur, J.S.C., Balendran, A., Van Der, K.J., Poli, V., Cohen, P., Alessi, D.R., The role of 3-phosphoinositide-dependent protein kinase 1 in activating AGC kinases defined in embryonic stem cells (2000) Current Biology, 10 (8), pp. 439-448. , DOI 10.1016/S0960-9822(00)00441-3
  • Batkin, M., Schvartz, I., Shaltiel, S., Snapping of the carboxyl terminal tail of the catalytic subunit of PKA onto its core: Characterization of the sites by mutagenesis (2000) Biochemistry, 39 (18), pp. 5366-5373. , DOI 10.1021/bi000153z
  • Steichen, J.M., Iyer, G.H., Li, S., Saldanha, S.A., Deal, M.S., Woods Jr., V.L., Taylor, S.S., Global consequences of activation loop phosphorylation on protein kinase A (2010) J. Biol. Chem., 285, pp. 3825-3832
  • Nirula, A., Ho, M., Phee, H., Roose, J., Weiss, A., Phosphoinositide-dependent kinase 1 targets protein kinase A in a pathway that regulates interleukin 4 (2006) Journal of Experimental Medicine, 203 (7), pp. 1733-1744. , http://www.jem.org/cgi/reprint/203/7/1733, DOI 10.1084/jem.20051715
  • Hirimburegama, K., Durnez, P., Keleman, J., Oris, E., Vergauwen, R., Mergelsberg, H., Thevelein, J.M., Nutrient-induced activation of trehalase in nutrient-starved cells of the yeast Saccharomyces cerevisiae: cAMP is not involved as second messenger (1992) J. Gen. Microbiol., 138, pp. 2035-2043
  • Durnez, P., Pernambuco, M.B., Oris, E., Arguelles, J.-C., Mergelsberg, H., Thevelein, J.M., Activation of trehalase during growth induction by nitrogen sources in the yeast Saccharomyces cerevisiae depends on the free catalytic subunits of cAMP-Dependent protein kinase, but not on functional pas proteins (1994) Yeast, 10 (8), pp. 1049-1064. , DOI 10.1002/yea.320100807
  • Lu, A., Hirsch, J.P., Cyclic AMP-independent regulation of protein kinase A substrate phosphorylation by kelch repeat proteins (2005) Eukaryotic Cell, 4 (11), pp. 1794-1800. , DOI 10.1128/EC.4.11.1794-1800.2005
  • Peeters, T., Louwet, W., Gelade, R., Nauwelaers, D., Thevelein, J.M., Versele, M., Kelch-repeat proteins interacting with the Gα protein Gpa2 bypass adenylate cyclase for direct regulation of protein kinase A in yeast (2006) Proceedings of the National Academy of Sciences of the United States of America, 103 (35), pp. 13034-13039. , DOI 10.1073/pnas.0509644103
  • Budhwar, R., Lu, A., Hirsch, J.P., Nutrient control of yeast PKA activity involves opposing effects on phosphorylation of the Bcy1 regulatory subunit (2010) Mol. Biol. Cell, 21, pp. 3749-3758
  • Inagaki, M., Schmelzle, T., Yamaguchi, K., Irie, K., Hall, M.N., Matsumoto, K., Pdk1 homologs activate the Pkc1-mitogen-activated protein kinase pathway in yeast (1999) Molecular and Cellular Biology, 19 (12), pp. 8344-8352
  • Voordeckers, K., Kimpe, M., Haesendonckx, S., Louwet, W., Versele, M., Thevelein, J.M., Yeast 3-phosphoinositide-dependent protein kinase-1 (PDK1) orthologs, Pkh1-3, differentially regulate phosphorylation of PKA and the PKB/S6K ortholog, Sch9 (2011) J. Biol. Chem., 286, pp. 22017-22027
  • De Camilli, P., Emr, S.D., McPherson, P.S., Novick, P., Phosphoinositides as regulators in membrane traffic (1996) Science, 271 (5255), pp. 1533-1539
  • Gallego, O., Betts, M.J., Gvozdenovic-Jeremic, J., Maeda, K., Matetzki, C., Aguilar-Gurrieri, C., Beltran-Alvarez, P., Jensen, L.J., A systematic screen for protein-lipid interactions in Saccharomyces cerevisiae (2010) Mol. Syst. Biol., 6, p. 430
  • Dickson, R.C., Roles for sphingolipids in Saccharomyces cerevisiae (2010) Adv. Exp. Med. Biol., 688, pp. 217-231
  • Friant, S., Lombardi, R., Schmelzle, T., Hall, M.N., Riezman, H., Sphingoid base signaling via Pkh kinases is required for endocytosis in yeast (2001) EMBO Journal, 20 (23), pp. 6783-6792. , DOI 10.1093/emboj/20.23.6783
  • DeHart, A.K.A., Schnell, J.D., Allen, D.A., Hicke, L., The conserved Pkh-Ypk kinase cascade is required for endocytosis in yeast (2002) Journal of Cell Biology, 156 (2), pp. 241-248. , DOI 10.1083/jcb.200107135
  • Grosshans, B.L., Grotsch, H., Mukhopadhyay, D., Ferna, I.M., Pfannstiel, J., Idrissi, F.-Z., Lechner, J., Geli, M.I., TEDS site phosphorylation of the yeast myosins I is required for ligand-induced but not for constitutive endocytosis of the G protein-coupled receptor Ste2p (2006) Journal of Biological Chemistry, 281 (16), pp. 11104-11114. , http://www.jbc.org/cgi/reprint/281/16/11104, DOI 10.1074/jbc.M508933200
  • Zhang, X., Lester, R.L., Dickson, R.C., Pil1p and Lsp1p negatively regulate the 3-phosphoinositide-dependent protein kinase-like kinase Pkh1p and downstream signaling pathways Pkc1p and Ypk1p (2004) Journal of Biological Chemistry, 279 (21), pp. 22030-22038. , DOI 10.1074/jbc.M400299200
  • Dickson, R.C., Sumanasekera, C., Lester, R.L., Functions and metabolism of sphingolipids in Saccharomyces cerevisiae (2006) Progress in Lipid Research, 45 (6), pp. 447-465. , DOI 10.1016/j.plipres.2006.03.004, PII S016378270600021X
  • Daquinag, A., Fadri, M., Jung, S.Y., Qin, J., Kunz, J., The yeast PH domain proteins Slm1 and Slm2 are targets of sphingolipid signaling during the response to heat stress (2007) Molecular and Cellular Biology, 27 (2), pp. 633-650. , DOI 10.1128/MCB.00461-06
  • Walther, T.C., Aguilar, P.S., Frohlich, F., Chu, F., Moreira, K., Burlingame, A.L., Walter, P., Pkh-kinases control eisosome assembly and organization (2007) EMBO Journal, 26 (24), pp. 4946-4955. , DOI 10.1038/sj.emboj.7601933, PII 7601933
  • Luo, G., Gruhler, A., Liu, Y., Jensen, O.N., Dickson, R.C., The sphingolipid long-chain base-Pkh1/2-Ypk1/2 signaling pathway regulates eisosome assembly and turnover (2008) J. Biol. Chem., 283, pp. 10433-10444
  • Levin, L.R., Zoller, M.J., Association of catalytic and regulatory subunits of cyclic AMP-dependent protein kinase requires a negatively charged side group at a conserved threonine (1990) Mol. Cell. Biol., 10, pp. 1066-1075
  • Gruhler, A., Olsen, J.V., Mohammed, S., Mortensen, P., Faergeman, N.J., Mann, M., Jensen, O.N., Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway (2005) Molecular and Cellular Proteomics, 4 (3), pp. 310-327. , DOI 10.1074/mcp.M400219-MCP200
  • Bodenmiller, B., Aebersold, R., Quantitative analysis of protein phosphorylation on a system-wide scale by mass spectrometry-based proteomics (2010) Methods Enzymol., 470, pp. 317-334
  • Gietz, R.D., Schiestl, R.H., Willems, A.R., Woods, R.A., Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure (1995) Yeast, 11, pp. 355-360
  • Kucsera, J., Yarita, K., Takeo, K., Simple detection method for distinguishing dead and living yeast colonies (2000) Journal of Microbiological Methods, 41 (1), pp. 19-21. , DOI 10.1016/S0167-7012(00)00136-6, PII S0167701200001366
  • Madeo, F., Frohlich, E., Frohlich, K.-U., A yeast mutant showing diagnostic markers of early and late apoptosis (1997) Journal of Cell Biology, 139 (3), pp. 729-734. , DOI 10.1083/jcb.139.3.729
  • Portela, P., Howell, S., Moreno, S., Rossi, S., In vivo and in vitro phosphorylation of two isoforms of yeast pyruvate kinase by protein kinase A (2002) Journal of Biological Chemistry, 277 (34), pp. 30477-30487. , DOI 10.1074/jbc.M201094200
  • Roskoski Jr., R., Assays of protein kinase (1983) Methods Enzymol., 99, pp. 3-6
  • Portela, P., Van Dijck, P., Thevelein, J.M., Moreno, S., Activation state of protein kinase A as measured in permeabilised Saccharomyces cerevisiae cells correlates with PKA-controlled phenotypes in vivo (2003) FEMS Yeast Research, 3 (1), pp. 119-126. , DOI 10.1016/S1567-1356(02)00158-7, PII S1567135602001587
  • Portela, P., Moreno, S., Glucose-dependent activation of protein kinase A activity in Saccharomyces cerevisiae and phosphorylation of its TPK1 catalytic subunit (2006) Cell. Signaling, 18, pp. 1072-1086
  • Tudisca, V., Recouvreux, V., Moreno, S., Boy-Marcotte, E., Jacquet, M., Portela, P., Differential localization to cytoplasm, nucleus or P-bodies of yeast PKA subunits under different growth conditions (2010) Eur. J. Cell Biol., 89, pp. 339-348
  • Keshwani, M.M., Klammt, C., Von Daake, S., Ma, Y., Kornev, A.P., Choe, S., Insel, P.A., Taylor, S.S., Cotranslational cis-phosphorylation of the COOH-terminal tail is a key priming step in the maturation of cAMP-dependent protein kinase (2012) Proc. Natl. Acad. Sci. U.S.A., 109, pp. E1221-E1229
  • Griffioen, G., Anghileri, P., Imre, E., Baroni, M.D., Ruis, H., Nutritional control of nucleocytoplasmic localization of cAMP-dependent protein kinase catalytic and regulatory subunits in Saccharomyces cerevisiae (2000) Journal of Biological Chemistry, 275 (2), pp. 1449-1456. , DOI 10.1074/jbc.275.2.1449
  • Griffioen, G., Branduardi, P., Ballarini, A., Anghileri, P., Norbeck, J., Baroni, M.D., Ruis, H., Nucleocytoplasmic distribution of budding yeast protein kinase a regulatory subunit Bcy1 requires Zds1 and is regulated by Yak1-dependent phosphorylation of its targeting domain (2001) Molecular and Cellular Biology, 21 (2), pp. 511-523. , DOI 10.1128/MCB.21.2.511-523.2001
  • Dettori, R., Sonzogni, S., Meyer, L., Lopez-Garcia, L.A., Morrice, N.A., Zeuzem, S., Engel, M., Biondi, R.M., Regulation of the interaction between protein kinase C-related protein kinase 2 (PRK2) and its upstream kinase, 3-phosphoinositide-dependent protein kinase 1 (PDK1) (2009) J. Biol. Chem., 284, pp. 30318-30327
  • Thevelein, J.M., De Winde, J.H., Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae (1999) Molecular Microbiology, 33 (5), pp. 904-918. , DOI 10.1046/j.1365-2958.1999.01538.x
  • Jurica, M.S., Mesecar, A., Heath, P.J., Shi, W., Nowak, T., Stoddard, B.L., The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate (1998) Structure, 6 (2), pp. 195-210
  • Guang, S., Bochner, A.F., Burkhart, K.B., Burton, N., Pavelec, D.M., Kennedy, S., Small regulatory RNAs inhibit RNA polymerase II during the elongation phase of transcription (2010) Nature, 465, pp. 1097-1101
  • Galello, F., Portela, P., Moreno, S., Rossi, S., Characterization of substrates that have a differential effect on Saccharomyces cerevisiae protein kinase A holoenzyme activation (2010) J. Biol. Chem., 285, pp. 29770-29779
  • Mazon, M.J., Behrens, M.M., Morgado, E., Portillo, F., Low activity of the yeast cAMP-dependent protein kinase catalytic subunit Tpk3 is due to the poor expression of the TPK3 gene (1993) European Journal of Biochemistry, 213 (1), pp. 501-506
  • Baxter, B.K., DiDone, L., Ogu, D., Schor, S., Krysan, D.J., Identification, in vitro activity and mode of action of phosphoinositide-dependent-1 kinase inhibitors as antifungal molecules (2011) ACS Chem. Biol., 6, pp. 502-510

Citas:

---------- APA ----------
Haesendonckx, S., Tudisca, V., Voordeckers, K., Moreno, S., Thevelein, J.M. & Portela, P. (2012) . The activation loop of PKA catalytic isoforms is differentially phosphorylated by Pkh protein kinases in Saccharomyces cerevisiae. Biochemical Journal, 448(3), 307-320.
http://dx.doi.org/10.1042/BJ20121061
---------- CHICAGO ----------
Haesendonckx, S., Tudisca, V., Voordeckers, K., Moreno, S., Thevelein, J.M., Portela, P. "The activation loop of PKA catalytic isoforms is differentially phosphorylated by Pkh protein kinases in Saccharomyces cerevisiae" . Biochemical Journal 448, no. 3 (2012) : 307-320.
http://dx.doi.org/10.1042/BJ20121061
---------- MLA ----------
Haesendonckx, S., Tudisca, V., Voordeckers, K., Moreno, S., Thevelein, J.M., Portela, P. "The activation loop of PKA catalytic isoforms is differentially phosphorylated by Pkh protein kinases in Saccharomyces cerevisiae" . Biochemical Journal, vol. 448, no. 3, 2012, pp. 307-320.
http://dx.doi.org/10.1042/BJ20121061
---------- VANCOUVER ----------
Haesendonckx, S., Tudisca, V., Voordeckers, K., Moreno, S., Thevelein, J.M., Portela, P. The activation loop of PKA catalytic isoforms is differentially phosphorylated by Pkh protein kinases in Saccharomyces cerevisiae. Biochem. J. 2012;448(3):307-320.
http://dx.doi.org/10.1042/BJ20121061