Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Non-enzymatic glycation of biomolecules has been implicated in the pathophysiology of aging and diabetes. Among the potential targets for glycation are biological membranes, characterized by a complex organization of lipids and proteins interacting and forming domains of different size and stability. In the present study, we analyse the effects of glycation on the interactions between membrane proteins and lipids. The phospholipid affinity for the transmembrane surface of the PMCA (plasma-membrane Ca2+-ATPase) was determined after incubating the protein or the phospholipids with glucose. Results show that the affinity between PMCA and the surrounding phospholipids decreases significantly after phosphospholipid glycation, but remains unmodified after glycation of the protein. Furthermore, phosphatidylethanolamine glycation decreases by ∼30% the stability of PMCA against thermal denaturation, suggesting that glycated aminophospholipids induce a structural rearrangement in the protein that makes it more sensitive to thermal unfolding. We also verified that lipid glycation decreases the affinity of lipids for two othermembrane proteins, suggesting that this effect might be common to membrane proteins. Extending these results to the in vivo situation, we can hypothesize that, under hyperglycaemic conditions, glycation of membrane lipids may cause a significant change in the structure and stability of membrane proteins, which may affect the normal functioning of membranes and therefore of cells. © The Authors Journal compilation.

Registro:

Documento: Artículo
Título:Effects of phosphatidylethanolamine glycation on lipid-protein interactions and membrane protein thermal stability
Autor:Levi, V.; Villamil Giraldo, A.M.; Castello, P.R.; Rossi, J.P.F.C.; González Flecha, F.L.
Filiación:Departamento de Física y Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria 1428 Buenos Aires, Argentina
Instituto de Química y Fisicoquímica Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-CONICET, Junín 956, 1113 Buenos Aires, Argentina
Department of Molecular Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO, United States
Palabras clave:Membrane protein; Non-enzymatic glycation; Phospholipid; Plasma membrane Ca2+ - ATPase; Protein-lipid interaction; Different sizes; Glycation; In-vivo; Lipid-protein interactions; Membrane lipids; Membrane protein; Membrane proteins; Non-enzymatic; Non-enzymatic glycation; Pathophysiology; Phosphatidylethanolamine; Plasma membrane Ca2+ - ATPase; Protein-lipid interaction; Structural rearrangement; Thermal denaturations; Thermal unfolding; Transmembrane; Biological membranes; Calcium; Cell membranes; Cytology; Glucose; Molecular biology; Phospholipids; Plasmas; Proteins; Pyrolysis; Stability; Membranes; adenosine triphosphatase (calcium); adenosine triphosphatase (potassium sodium); aminophospholipid; erythrocyte band 3 protein; membrane lipid; membrane protein; phosphatidylethanolamine; phospholipid; 1,2 dimyristoylphosphatidylethanolamine; 1,2-dimyristoylphosphatidylethanolamine; adenosine triphosphatase (potassium sodium); advanced glycation end product; detergent; dimyristoylphosphatidylcholine; erythrocyte band 3 protein; glucose; macrogol derivative; membrane protein; plasma membrane calcium transporting adenosine triphosphatase; polyoxyethylene 10 dodecyl ether; polyoxyethylene-10-dodecyl ether; article; binding affinity; cell surface; controlled study; erythrocyte membrane; glycation; human; human cell; hyperglycemia; lipid composition; membrane structure; priority journal; protein folding; protein glycosylation; protein lipid interaction; protein stability; protein structure; thermostability; animal; blood; chemistry; drug effect; enzyme stability; enzymology; erythrocyte; glycosylation; micelle; protein denaturation; swine; Animals; Anion Exchange Protein 1, Erythrocyte; Detergents; Dimyristoylphosphatidylcholine; Enzyme Stability; Erythrocytes; Glucose; Glycosylation; Glycosylation End Products, Advanced; Humans; Membrane Proteins; Micelles; Phosphatidylethanolamines; Plasma Membrane Calcium-Transporting ATPases; Polyethylene Glycols; Protein Denaturation; Sodium-Potassium-Exchanging ATPase; Swine
Año:2008
Volumen:416
Número:1
Página de inicio:145
Página de fin:152
DOI: http://dx.doi.org/10.1042/BJ20080618
Título revista:Biochemical Journal
Título revista abreviado:Biochem. J.
ISSN:02646021
CODEN:BIJOA
CAS:phosphatidylethanolamine, 1405-71-6; dimyristoylphosphatidylcholine, 13699-48-4, 18194-24-6; glucose, 50-99-7, 84778-64-3; 1,2-dimyristoylphosphatidylethanolamine, 20255-95-2; Anion Exchange Protein 1, Erythrocyte; Detergents; Dimyristoylphosphatidylcholine, 13699-48-4; Glucose, 50-99-7; Glycosylation End Products, Advanced; Membrane Proteins; Micelles; phosphatidylethanolamine, 39382-08-6; Phosphatidylethanolamines; Plasma Membrane Calcium-Transporting ATPases, EC 3.6.3.8; Polyethylene Glycols; polyoxyethylene-10-dodecyl ether; Sodium-Potassium-Exchanging ATPase, EC 3.6.3.9
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02646021_v416_n1_p145_Levi

Referencias:

  • Maillard, L.C., Action des acides aminés sur les sucres: Formation des melanoidines par voie methodique. (1912) Compt. Rend. Hebd. Seances Acad. Sci, 154, pp. 66-68
  • Cho, S.J., Roman, G., Yeboah, F., Konishi, Y., The road to advanced glycation end products: A mechanistic perspective (2007) Curr. Med. Chem, 14, pp. 1653-1671
  • Oliver, C.M., Melton, L.D., Stanley, R.A., Creating proteins with novel functionality via the Maillard reaction: A review (2006) Crit. Rev. Food Sci. Nutr, 46, pp. 337-350
  • Ulrich, P., Cerami, A., Protein glycation, diabetes, and aging (2001) Recent Prog. Horm. Res, 56, pp. 1-21
  • Bucala, R., Makita, Z., Koschinsky, T., Cerami, A., Vlassara, H., Lipid advanced glycosylation: Pathway for lipid oxidation in vivo (1993) Proc. Natl. Acad. Sci. U.S.A, 90, pp. 6434-6438
  • Nakagawa, K., Oak, J.H., Higuchi, O., Tsuzuki, T., Oikawa, S., Otani, H., Mune, M., Miyazawa, T., Ion-trap tandem mass spectrometric analysis of Amadori-glycated phosphatidylethanolamine in human plasma with or without diabetes (2005) J. Lipid Res, 46, pp. 2514-2524
  • Oak, J., Nakagawa, K., Miyazawa, T., Synthetically prepared Amadori-glycated phosphatidylethanolamine can trigger lipid peroxidation via free radical reactions (2000) FEBS Lett, 481, pp. 26-30
  • Higuchi, O., Nakagawa, K., Tsuzuki, T., Suzuki, T., Oikawa, S., Miyazawa, T., Aminophospholipid glycation and its inhibitor screening system: A new role of pyridoxal 5′-phosphate as the inhibitor (2006) J. Lipid Res, 47, pp. 964-974
  • Singer, S.J., Nicolson, G.L., The fluid mosaic model of the structure of cell membranes (1972) Science, 175, pp. 720-731
  • Bagatolli, L.A., To see or not to see: Lateral organization of biological membranes and fluorescence microscopy (2006) Biochim. Biophys. Acta, 1758, pp. 1541-1556
  • Engelman, D.M., Membranes are more mosaic than fluid (2005) Nature, 438, pp. 578-580
  • Mukherjee, S., Maxfield, F.R., Membrane domains (2004) Annu. Rev. Cell Dev. Biol, 20, pp. 839-866
  • White, S.H., Wimley, W.C., Membrane protein folding and stability: Physical principles (1999) Annu. Rev. Biophys. Biomol. Struct, 28, pp. 319-365
  • Marsh, D., Protein modulation of lipids, and vice-versa, in membranes (2008) Biochim. Biophys. Acta, 1778, pp. 1545-1575
  • Jost, P.C., Griffith, O.H., Capaldi, R.A., Vanderkooi, G., Evidence for boundary lipid in membranes (1973) Proc. Natl. Acad. Sci. U.S.A, 70, pp. 480-484
  • Levi, V., Rossi, J.P., Echarte, M.M., Castello, P.R., González Flecha, F.L., Thermal stability of the plasma membrane calcium pump. Quantitative analysis of its dependence on lipid-protein interactions (2000) J. Membr. Biol, 173, pp. 215-225
  • González Flecha, F.L., Bermúdez, M.C., Cédola, N.V., Gagliardino, J.J., Rossi, J.P., Decreased Ca2+-ATPase activity after glycosylation of erythrocyte membranes in vivo and in vitro (1990) Diabetes, 39, pp. 707-711
  • González Flecha, F.L., Castello, P.R., Caride, A.J., Gagliardino, J.J., Rossi, J.P., The erythrocyte calcium pump is inhibited by non-enzymic glycation: Studies in situ and with the purified enzyme (1993) Biochem. J, 293, pp. 369-375
  • González Flecha, F.L., Castello, P.R., Gagliardino, J.J., Rossi, J.P., Molecular characterization of the glycated plasma membrane calcium pump (1999) J. Membr. Biol, 171, pp. 25-34
  • Strehler, E.E., James, P., Fischer, R., Heim, R., Vorherr, T., Filoteo, A.G., Penniston, J.T., Carafoli, E., Peptide sequence analysis and molecular cloning reveal two calcium pump isoforms in the human erythrocyte membrane (1990) J. Biol. Chem, 265, pp. 2835-2842
  • Castello, P.R., González Flecha, F.L., Caride, A.J., Fernández, H.N., Delfino, J.M., Rossi, J.P., The membrane topology of the amino-terminal domain of the red cell calcium pump (1997) Protein Sci, 6, pp. 1708-1717
  • Levi, V., Rossi, J.P., Castello, P.R., González Flecha, F.L., Oligomerization of the plasma membrane calcium pump involves two regions with different thermal stability (2000) FEBS Lett, 483, pp. 99-103
  • Levi, V., Rossi, J.P., Castello, P.R., González Flecha, F.L., Structural significance of the plasma membrane calcium pump oligomerization (2002) Biophys. J, 82, pp. 437-446
  • Chen, P.S., Toribara, T.Y., Warner, H., Microdetermination of phosphorus (1956) Anal. Chem, 28, pp. 1756-1758
  • Jensen, J., Norby, J.G., Ottolenghi, P., Binding of sodium and potassium to the sodium pump of pig kidney evaluated from nucleotide-binding behaviour (1984) J. Physiol, 346, pp. 219-241
  • Casey, J.R., Lieberman, D.M., Reithmeier, R.A., Purification and characterization of band 3 protein (1989) Methods Enzymol, 173, pp. 494-512
  • Ravandi, A., Kuksis, A., Marai, L., Myher, J.J., Preparation and characterization of glucosylated aminoglycerophospholipids (1995) Lipids, 30, pp. 885-891
  • Lertsiri, S., Shiraishi, M., Miyazawa, T., Identification of deoxy-D-fructosyl phosphatidylethanolamine as a non-enzymic glycation product of phosphatidylethanolamine and its occurrence in human blood plasma and red blood cells (1998) Biosci. Biotechnol. Biochem, 62, pp. 893-901
  • Filomatori, C.V., Rega, A.F., On the mechanism of activation of the plasma membrane Ca2+-ATPase by ATP and acidic phospholipids (2003) J. Biol. Chem, 278, pp. 22265-22271
  • Holman, R.T., Burr, G.O., Spectrophotometric studies of the oxidation of fats. VI. Oxygen absorption and chromophore production in fatty esters (1946) J. Am. Chem. Soc, 68, pp. 562-566
  • Klein, R.A., The detection of oxidation in liposome preparations (1970) Biochim. Biophys. Acta, 210, pp. 486-489
  • Levi, V., Rossi, J.P., Castello, P.R., González Flecha, F.L., Quantitative analysis of interactions between membrane proteins and amphiphiles using resonance energy transfer (2003) Anal. Biochem, 317, pp. 171-179
  • Lakowicz, J., (2006) Principles of Fluorescence Spectroscopy, , 3rd Ed, Springer, New York
  • Yau, W.M., Wimley, W.C., Gawrisch, K., White, S.H., The preference of tryptophan for membrane interfaces (1998) Biochemistry, 37, pp. 14713-14718
  • Seber, G.A.F., Wild, C.J., (1989) Nonlinear Regression, , John Wiley & Sons, New York
  • Box, G.E.P., Hunter, W.G., Hunter, J.S., (1978) Statistics for Experimenters, An Introduction to Design, Data Analysis and Model Building, , Wiley, New York
  • Goldstein, S., Meyerstein, D., Czapski, G., The Fenton reagents (1993) Free Radical Biol. Med, 15, pp. 435-445
  • Lichtenberg, D., Characterization of the solubilization of lipid bilayers by surfactants (1998) Biochim. Biophys. Acta, 821, pp. 470-478
  • Mukhamedova, K.S., Glushenkova, A.I., Molecular composition of soybean phospholipids (1997) Chem. Nat. Comp, 33, pp. 693-694
  • Fairbanks, G., Steck, T.L., Wallach, D.F., Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane (1971) Biochemistry, 10, pp. 2606-2617
  • Bowie, J.U., Stabilizing membrane proteins (2001) Curr. Opin. Struct. Biol, 11, pp. 397-402
  • Lifshitz, Y., Petrovich, E., Haviv, H., Goldshleger, R., Tal, D.M., Garty, H., Karlish, S.J., Purification of the human α2 isoform of Na,K-ATPase expressed in Pichia pastoris. Stabilization by lipids and FXYD1 (2007) Biochemistry, 46, pp. 14937-14950

Citas:

---------- APA ----------
Levi, V., Villamil Giraldo, A.M., Castello, P.R., Rossi, J.P.F.C. & González Flecha, F.L. (2008) . Effects of phosphatidylethanolamine glycation on lipid-protein interactions and membrane protein thermal stability. Biochemical Journal, 416(1), 145-152.
http://dx.doi.org/10.1042/BJ20080618
---------- CHICAGO ----------
Levi, V., Villamil Giraldo, A.M., Castello, P.R., Rossi, J.P.F.C., González Flecha, F.L. "Effects of phosphatidylethanolamine glycation on lipid-protein interactions and membrane protein thermal stability" . Biochemical Journal 416, no. 1 (2008) : 145-152.
http://dx.doi.org/10.1042/BJ20080618
---------- MLA ----------
Levi, V., Villamil Giraldo, A.M., Castello, P.R., Rossi, J.P.F.C., González Flecha, F.L. "Effects of phosphatidylethanolamine glycation on lipid-protein interactions and membrane protein thermal stability" . Biochemical Journal, vol. 416, no. 1, 2008, pp. 145-152.
http://dx.doi.org/10.1042/BJ20080618
---------- VANCOUVER ----------
Levi, V., Villamil Giraldo, A.M., Castello, P.R., Rossi, J.P.F.C., González Flecha, F.L. Effects of phosphatidylethanolamine glycation on lipid-protein interactions and membrane protein thermal stability. Biochem. J. 2008;416(1):145-152.
http://dx.doi.org/10.1042/BJ20080618