Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The first and rate-controlling step of the haem biosynthetic pathway in mammals and fungi is catalysed by the mitochondrial-matrix enzyme 5-aminolaevulinate synthase (ALAS). The purpose of this work was to explore the molecular mechanisms involved in the cAMP regulation of rat housekeeping ALAS gene expression. Thus we have examined the ALAS promoter for putative transcription-factor-binding sites that may regulate transcription in a cAMP-dependent protein kinase (PKA)-induced context. Applying both transient transfection assays with a chloramphenicol acetyltransferase reporter gene driven by progressive ALAS promoter deletions in HepG2, and electrophoresis mobility-shift assays we have identified two putative cAMP-response elements (CREs) at positions - 38 and - 142. Functional analysis showed that both CRE-like sites were necessary for complete PKA induction, but only one for basal expression. Co-transfection with a CRE-binding protein (CREB) expression vector increased PKA-mediated induction of ALAS promoter transcriptional activity. However, in the absence of co-transfected PKA, CREB worked as a specific repressor for ALAS promoter activity. A CREB mutant deficient in a PKA phosphorylation site was unable to induce expression of the ALAS gene but could inhibit non-stimulated promoter activity. Furthermore, a DNA-binding mutant of CREB did not interfere with ALAS promoter basal activity. Site-directed-mutagenesis studies showed that only the nearest element to the transcription start site was able to inhibit the activity of the promoter. Therefore, we conclude that CREB, through its binding to CRE-like sites, mediates the effect of cAMP on ALAS gene expression. Moreover, we propose that CREB could also act as a repressor of ALAS transcription, but is able to reverse its role after PKA activation. Dephosphorylated CREB would interfere in a spatial-disposition-dependent manner with the transcriptional machinery driving inhibition of gene expression.

Registro:

Documento: Artículo
Título:5-aminolaevulinate synthase gene promoter contains two cAMP-response element (CRE)-like sites that confer positive and negative responsiveness to CRE-binding protein (CREB)
Autor:Giono, L.E.; Varone, C.L.; Cánepa, E.T.
Filiación:Laboratorio de Biologia Molec., Dipto. de Quimica Biologica, Universidad de Buenos Aires, Pabellón II Piso 4, 1428 Buenos Aires, Argentina
Palabras clave:Gene expression; Haem biosynthesis; Hepatic cell; Protein kinase A; Transcription factor; 5 aminolevulinate synthase; cyclic AMP; cyclic AMP dependent protein kinase; cyclic AMP responsive element binding protein; DNA; animal cell; article; cyclic AMP responsive element; enzyme activation; enzyme induction; enzyme phosphorylation; gene deletion; gene expression regulation; genetic transfection; heme synthesis; housekeeping gene; human; human cell; nonhuman; priority journal; promoter region; protein binding; protein DNA binding; rat; repressor gene; site directed mutagenesis; transcription regulation; 5-Aminolevulinate Synthetase; Animals; Binding Sites; CREB-Binding Protein; Cyclic AMP Response Element-Binding Protein; Cyclic AMP-Dependent Protein Kinases; Gene Expression; Humans; Mutation; Nuclear Proteins; Oligonucleotides, Antisense; Plasmids; Promoter Regions (Genetics); Rats; Signal Transduction; Trans-Activators; Transcription, Genetic; Tumor Cells, Cultured; Animalia; Fungi; Mammalia
Año:2001
Volumen:353
Número:2
Página de inicio:307
Página de fin:316
DOI: http://dx.doi.org/10.1042/0264-6021:3530307
Título revista:Biochemical Journal
Título revista abreviado:Biochem. J.
ISSN:02646021
CODEN:BIJOA
CAS:5-Aminolevulinate Synthetase, EC 2.3.1.37; CREB-Binding Protein, EC 2.3.1.48; CREBBP protein, human; Crebbp protein, rat; Cyclic AMP Response Element-Binding Protein; Cyclic AMP-Dependent Protein Kinases, EC 2.7.1.37; Nuclear Proteins; Oligonucleotides, Antisense; Trans-Activators
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02646021_v353_n2_p307_Giono

Referencias:

  • May, B.K., Dogra, S.C., Sadlon, T.J., Bhasker, C.R., Cox, T.C., Bottomley, S.S., Molecular regulation of heme biosynthesis in higher vertebrates (1995) Progr. Nucleic Acids Res. Mol. Biol., 51, pp. 1-51
  • Ades, Y.Z., Heme production in animal tissues: The regulation of biogenesis of δ-aminolevulinate synthase (1990) Int. J. Biochem., 22, pp. 565-578
  • Bottomley, S.S., May, B.K., Cox, T.C., Cotter, P.D., Bishop, D.F., Molecular defects of erythroid 5-aminolevulinate synthase in X-linked sideroblastic anemia (1995) J. Bioenerg. Biomembr., 27, pp. 161-168
  • Bishop, D.F., Henderson, A.S., Astrin, K.H., Human delta-aminolevulinate synthase: Assignment of the house keeping gene to 3p21 and erythroid specific gene to the X chromosome (1990) Genomics, 7, pp. 207-214
  • Kappas, A., Sassa, S., Galbraith, R.A., Nordmann, Y., The porphyrias (1995), pp. 2103-2159. , The Metabolic and Molecular Basis of Inherited Diseases, 7th edn (Scriver C. R., Beaudet, A. L, Sly, W. S. and Valle, D., eds.), McGraw-Hill, New York; Surinya, K.H., Cox, T.C., May, B.K., Transcriptional regulation of the human erythroid 5-aminolevulinate synthase gene (1997) J. Biol. Chem., 272, pp. 26585-26594
  • Sadlon, T.J., Dell'Oso, T., Surinya, K.H., May, B.K., Regulation of erythroid 5-aminolevulinate synthase expression during erythropoiesis (1999) Int. J. Biochem. Cell Biol., 31, pp. 1153-1167
  • Ponka, P., Cell biology of heme (1999) Am. J. Med. Sci., 318, pp. 241-256
  • Moore, M.R., Biochemistry of porphyria (1993) Int. J. Biochem., 25, pp. 1353-1368
  • Srivastava, G., Hansen, A.J., Bawden, M.J., May, B.K., Hemin administration to rats reduces levels of hepatic mRNAs for phenobarbitone-inducible enzymes (1990) Mol. Pharmacol., 38, pp. 486-493
  • DeMatteis, F., Marks, G.S., Cytochrome P450 and its interactions with the heme biosynthetic pathway (1996) Can. J. Physiol. Pharmacol., 74, pp. 1-8
  • Jover, R., Hoffman, K., Meyer, U.A., Induction of 5-aminolevulinate synthase by drugs is independent of increased apocytochrome P450 synthesis (1996) Biochem. Biophys. Res. Commun., 226, pp. 152-157
  • Varone, C.L., Cánepa, E.T., Llambías, E.B.C., Grinstein, M., Cyclic AMP regulation of phenobarbital mediated induction of δ-aminolevulinate synthase mRNA in hepatocytes from normal and experimental-diabetic rats (1994) Biochem. Cell Biol., 72, pp. 381-390
  • Varone, C.L., Cánepa, E.T., Evidence that protein kinase C is involved in δ-aminolevulinate synthase expression in rat hepatocytes (1997) Arch. Biochem. Biophys., 341, pp. 259-266
  • Montminy, M.R., Transcriptional regutation by cyclic AMP (1997) Annu. Rev. Biochem., 66, pp. 807-822
  • Brindle, P.K., Montminy, M.R., The CREB family of transcription activators (1992) Curr. Opin. Genet. Dev., 2, pp. 199-204
  • De Groot, R.P., Sassone-Corsi, P., Hormonal control of gene expression: Multiplicity and versatility of cyclic adenosine 3′,5′ -monophosphate-responsive nuclear regulators (1993) Mol. Endocrinol., 7, pp. 145-153
  • Gonzalez, G.A., Montminy, M.R., Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133 (1989) Cell, 59, pp. 675-680
  • Kamei, Y., Xu, L., Heinzel, T., Torchia, J., Kurokawa, R., Gloss, B., Lin, S.C., Rosenfeld, M.G., A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors (1996) Cell, 85, pp. 403-414
  • Brindle, P., Linke, S., Montminy, M.R., Protein-kinase-A-dependent activator in transcription factor CREB reveals a new role for CREM repressors (1993) Nature (London), 364, pp. 821-824
  • Ofir, R., Dwarki, V.J., Rashid, D., Verma, I.M., CREB represses transcription of fos promoter: Role of phosphorylation (1991) Gene Expr., 1, pp. 55-60
  • Vallejo, M., Gosse, M.E., Beckman, W., Habener, J.F., Impaired cyclic AMP-dependent phosphorylation renders CREB a repressor of C/EBP-induced transcription of the somatostatine gone in an insulinoma cell line (1995) Mol. Cell. Biol., 15, pp. 415-424
  • Lemaigre, F.P., Ace, C.I., Green, M.R., The cAMP response element binding protein, CREB, is a potent inhibitor of diverse transcriptional activators (1993) Nucleic Acids Res., 21, pp. 2907-2911
  • Braidotti, G., Borthwick, I.A., May, B.K., Identification of regulatory sequences in the gone for 5-aminolevulithate synthase from rat (1993) J. Biol. Chem., 268, pp. 1109-1117
  • Yomogida, K., Yamamoto, M., Yamagami, T., Fujita, H., Hayashi, N., Structure and expression of the gene encoding rat nonspecific form of δ-aminolevulinate synthase (1993) J. Biochem., 113, pp. 364-371
  • Quandt, K., French, K., Karas, H., Wingender, H., Werner, T., Matlnd and Matinspector-New fast and versatile tools for detection of consensus matches in nucleotide sequence data (1995) Nucleic Acids Res., 23, pp. 4878-4884
  • Varone, C.L., Giono, L.E., Ochoa, A., Zakin, M.M., Cánepa, E.T., Transcriptional regulation of 5-aminolevulinate synthase by phenobarbital and cAMP-dependent protein kinase (1999) Arch. Biochem. Biophys., 372, pp. 261-270
  • Mellon, P.L., Clegg, C.H., Correll, L.A., McKnight, G.S., Regulation of transcription by cyclic AMP-dependent protein kinase (1989) Proc. Natl. Acad. Sci. U.S.A., 86, pp. 4887-4891
  • Dwarki, V.J., Montminy, M.R., Verma, I.M., Both the basic region and the 'leucine zipper' domain of the cyclic AMP response element binding (CREB) protein are essential for transcriptional activation (1990) EMBO J., 9, pp. 225-232
  • Seed, B., Sheen, J.Y., A simple phase-extraction assay for chloramphenicol acyltransferase activity (1988) Gene, 67, pp. 271-277
  • Chomczinsky, P., Sacchi, N., Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction (1987) Anal. Biochem., 71, pp. 341-350
  • Bishop, D.F., Two different genes encode delta-aminolevulinate synthase in humans: Nucteotide sequences of cDNAs for the housekeeping and erythroid genes (1990) Nucleic Acids Res., 18, pp. 7187-7188
  • Sambrook, J., Fritsch, E.F., Maniatis, T., (1989) Molecular Cloning: a Laboratory Manual, 2nd edn., , Cold Spring Harbor Press, Cold Spring Harbor
  • Andrews, N.C., Faller, D.V., A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells (1991) Nucleic Acids Res., 19, pp. 2499-2503
  • Roesler, W.J., Park, E.A., Hormone response units: One plus one equals more than two (1998) Mol. Cell Biochem., 178, pp. 1-8
  • Ogbourne, S., Antalis, T.M., Transcriptional control and the role of silencers in transcriptional regulation in eukaryotes (1998) Biochem. J., 331, pp. 1-14
  • Habener, J.F., Meyer, T.E., Yun, Y., Waeberg, G., Hoeffler, J.P., Characterization of a cAMP-regulated enhancer-binding protein (1990) Metabolism, 39, pp. 13-16
  • Kingsley-Kallesem, M.L., Kelly, D., Rizzino, A., Transcriptional regulation of the transforming growth factor-beta2 promoter by cAMP-responsive element-binding protein (CREB) and activating transcription factor-1 (ATF-1) is modulated by protein kinases and the coactivators p300 and CREB-binding protein (1999) J. Biol. Chem., 274, pp. 34020-34028
  • Wolfl, S., Martínez, C., Majzoub, J.A., Inducible binding of cyclic adenosine 3′,5′-monophosphate (cAMP)-responsive element binding protein (CREB) to a cAMP-responsive promoter in vivo (1999) Mol. Endocrinol., 13, pp. 659-869
  • De Cesare, D., Fimia, G.M., Sassone-Corsi, P., Signaling routes to CREM and CREB: Plasticity in transcriptional activation (1999) Trends Biochem. Sci., 24, pp. 281-285
  • Lamph, W.H., Dwarki, V.J., Ofir, R., Montminy, M.R., Verma, I.M., Negative and positive regulation by transcription factor cAMP response element-binding protein is modulated by phosphorylation (1990) Proc. Natl. Acad. Sci. U.S.A., 87, pp. 4320-4324
  • Loriaux, M.M., Rehfuss, R.P., Brennan, R.G., Goodman, R.H., Engineered leucine zippers show that hemiphosphorylated CREB complexes are transcriptionally active (1993) Proc. Natl. Acad. Sci. U.S.A., 90, pp. 9046-9050
  • Quinn, P.G., Distinct activation domains within cAMP response element-binding protein (CREB) mediate basal and cAMP-stimulated transcription (1993) J. Biol. Chem., 268, pp. 16999-17009
  • Felinski, E.A., Quinn, P.G., The CREB constitutive activation domain interacts with TATA-binding protein-associated factor 110 (TAF110) through specific hydrophobic residues in one of the three subdomains required for both activation and TAF110 binding (1999) J. Biol. Chem., 274, pp. 11672-11678

Citas:

---------- APA ----------
Giono, L.E., Varone, C.L. & Cánepa, E.T. (2001) . 5-aminolaevulinate synthase gene promoter contains two cAMP-response element (CRE)-like sites that confer positive and negative responsiveness to CRE-binding protein (CREB). Biochemical Journal, 353(2), 307-316.
http://dx.doi.org/10.1042/0264-6021:3530307
---------- CHICAGO ----------
Giono, L.E., Varone, C.L., Cánepa, E.T. "5-aminolaevulinate synthase gene promoter contains two cAMP-response element (CRE)-like sites that confer positive and negative responsiveness to CRE-binding protein (CREB)" . Biochemical Journal 353, no. 2 (2001) : 307-316.
http://dx.doi.org/10.1042/0264-6021:3530307
---------- MLA ----------
Giono, L.E., Varone, C.L., Cánepa, E.T. "5-aminolaevulinate synthase gene promoter contains two cAMP-response element (CRE)-like sites that confer positive and negative responsiveness to CRE-binding protein (CREB)" . Biochemical Journal, vol. 353, no. 2, 2001, pp. 307-316.
http://dx.doi.org/10.1042/0264-6021:3530307
---------- VANCOUVER ----------
Giono, L.E., Varone, C.L., Cánepa, E.T. 5-aminolaevulinate synthase gene promoter contains two cAMP-response element (CRE)-like sites that confer positive and negative responsiveness to CRE-binding protein (CREB). Biochem. J. 2001;353(2):307-316.
http://dx.doi.org/10.1042/0264-6021:3530307