Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We have initially shown that DC/ApoNec vaccine can induce protection against the poorly immunogenic B16F1 melanoma in mice. The population of DC obtained for vaccination after 7. days culture with murine GM-CSF is heterogeneous and presents about 60% of CD11c+ DC. Therefore, our purpose was to identify the phenotype of the cells obtained after differentiation and its immunogenicity once injected. DC were separated with anti-CD11c microbeads and the two populations identified in terms of CD11c positivity (DC+ and DC-) were also studied. Approximately 26.6% of the cells in DC+ fraction co-expressed CD11c+ and F4/80 markers and 75.4% were double positive for CD11c and CD11b markers. DC+ fraction also expressed Ly6G. DC- fraction was richer in CD11c-/F4/80+ macrophages (44.7%), some of which co-expressed Ly6G (41.8%), and F4/80-/Ly6-G+ neutrophils (34.6%). Both DC+ and DC- fractions displayed similar capacity to phagocyte and endocyte antigens and even expressed levels of MHC Class II and CD80, CD83 and CD86 costimulatory molecules similar to those in the DC fraction. However, only DC/ApoNec vaccine was capable to induce protection in mice (p<. 0.01). After 24. h co-culture, no detectable level of IL-12 was recorded in DC/ApoNec vaccine, either in supernatant or intracellularly. Therefore, the protection obtained with DC/ApoNec vaccine seemed to be independent of the vaccine's ability to secrete this inflammatory cytokine at the time of injection. In conclusion, we demonstrated that all cell types derived from the culture of mouse bone marrow with GM-CSF are necessary to induce antitumor protection in vivo. © 2012 Elsevier Ltd.

Registro:

Documento: Artículo
Título:Anti-melanoma vaccinal capacity of CD11c-positive and -negative cell populations present in GM-CSF cultures derived from murine bone marrow precursors
Autor:Campisano, S.; Mac Keon, S.; Gazzaniga, S.; Ruiz, M.S.; Traian, M.D.; Mordoh, J.; Wainstok, R.
Filiación:Depto. de Química Biológica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA Buenos Aires, Argentina
Depto. de Química Biológica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Universidad de Buenos Aires, IQUIBICEN-CONICET, Intendente Güiraldes 2160, C1428EGA Buenos Aires, Argentina
Fundación Instituto Leloir-IIBBA CONICET, Av. Patricias Argentinas 435, Ciudad de Buenos Aires, C1405BWE Buenos Aires, Argentina
Palabras clave:Bone marrow; Dendritic cell; Melanoma; Vaccine; apoptotic and necrotic cell vaccine; B7 antigen; CD11b antigen; CD83 antigen; CD86 antigen; dendritic cell vaccine; glycoprotein p 15095; granulocyte macrophage colony stimulating factor; interleukin 12; major histocompatibility antigen class 2; unclassified drug; vaccine; animal cell; animal experiment; animal model; article; bone marrow; cell differentiation; cell fractionation; cell population; cell type; coculture; controlled study; dendritic cell; immunogenicity; macrophage; male; mouse; neutrophil; nonhuman; phagocyte; phenotype; precursor; priority journal; tumor cell; Animals; Antigen Presentation; Antigens, CD11c; Antigens, Surface; Bone Marrow Cells; Cancer Vaccines; Cell Differentiation; Cell Line, Tumor; Coculture Techniques; Dendritic Cells; Granulocyte-Macrophage Colony-Stimulating Factor; Interleukin-12; Lymphocyte Activation; Male; Melanoma, Experimental; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Neutrophils
Año:2013
Volumen:31
Número:2
Página de inicio:354
Página de fin:361
DOI: http://dx.doi.org/10.1016/j.vaccine.2012.10.114
Título revista:Vaccine
Título revista abreviado:Vaccine
ISSN:0264410X
CODEN:VACCD
CAS:interleukin 12, 138415-13-1; Antigens, CD11c; Antigens, Surface; Cancer Vaccines; Granulocyte-Macrophage Colony-Stimulating Factor, 83869-56-1; Interleukin-12, 187348-17-0
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0264410X_v31_n2_p354_Campisano

Referencias:

  • Lesterhuis, W.J., de Vries, I.J.M., Adema, G.J., Punt, C.J.A., Dendritic cell-based vaccines in cancer immunotherapy: an update on clinical and immunological results (2004) Ann Oncol, 15 (4), pp. iv145-iv151
  • Delamarre, L., Mellman, I., Harnessing dendritic cells for immunotherapy (2011) Semin Immunol, 23, pp. 2-11
  • Timmerman, J., Levy, R., Dendritic cell vaccine for cancer immunotherapy (1999) Annu Rev Med, 50, pp. 507-529
  • O' Neill, H.C., Wilson, H.L., Limitations with in vitro production of dendritic cells using cytokines (2004) J Leukoc Biol, 75, pp. 600-603
  • Morelli, A.E., Zahorchak, A.F., Larregina, A.T., Colvin, B.L., Logar, A.J., Takayama, T., Cytokine production by mouse myeloid dendritic cells in relation to differentiation and terminal maturation induced by lipopolysaccharide or CD40 ligation (2001) Blood, 98 (5), pp. 1512-1523
  • Reis e Sousa, C., Dendritic cells in a mature age (2006) Nature, 6, pp. 476-482
  • Mayordomo, J.I., Zorina, T., Storkus, W.J., Zitvogel, L., Celluzi, C., Falo, L.D., Bone marrow derived dendritic cells pulsed with syngeneic tumour peptides elicit protective and therapeutic antitumour immunity (1996) Nature Med, 1, pp. 1297-1302
  • Hegmans, J.P., Hemmes, A., Aerts, J.G., Hoogsteden, H.C., Lambrecht, B.N., Immunotherapy of Murine Malignant Mesothelioma Using Tumor Lysate-pulsed Dendritic Cells (2005) Am J Respir Crit Care Med, 171, pp. 1168-1177
  • Rossowska, J., Pajtasz-Piasecka, E., Szyda, A., Ziêtara, N., Duoe, D., Tissue localization of tumor antigen-loaded mouse dendritic cells applied as an anti-tumor vaccine and their influence on immune response (2007) Folia Histochem Cytobiol, 45 (4), pp. 349-355
  • Chen, Z., Moyana, T., Saxena, A., Warrington, R., Jia, Z., Xiang, J., Efficient antitumor immunity derived from maturation of dendritic cells that had phagocytosed apoptotic/necrotic tumor cells (2001) Int J Cancer, 93, pp. 539-548
  • Goldszmid, R.S., Idoyaga, J., Bravo, A.I., Steinman, R., Mordoh, J., Wainstok, R., Dendritic cells charged with apoptotic tumor cells induce long-lived protective CD4+ and CD8+ T cell immunity against B16 melanoma (2003) J Immunol, 171, pp. 5940-5947
  • Celluzzi, C.M., Mayordomo, J.I., Storkus, W.J., Lotze, M.T., Falo, L.D., Peptide-pulsed dendritic cells induce antigen-specific, CTL-mediated protective tumor immunity (1996) J Exp Med, 183, pp. 283-287
  • Benencia, F., Sprague, L., McGinty, J., Pate, M., Muccioli, M., Dendritic cells, the tumor microenvironment and the challenges for an effective antitumor vaccination (2011) J Biomed Biotechnol, 2012, pp. 1-15
  • Zitvogel, L., Mayordomo, J.I., Tjandrawan, T., DeLeo, A.B., Clarke, M.R., Lotze, M.T., Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines (1996) J Exp Med, 83, pp. 87-97
  • Shimizu, K., Fields, R.C., Giedlin, M., Mule, J., Systemic administration of interleukin 2 enhances the therapeutic efficacy of dendritic cell-based tumor vaccines (1999) Proc Natl Acad Sci USA, 96, pp. 2268-2273
  • Pilon-Tomas, S., Mackay, A., Vohra, N., Mulé, J.J., Blockade of programmed death ligand 1 enhances the therapeutic efficacy of combination immunotherapy against melanoma (2010) J Immunol, 184, pp. 3442-3449
  • Vulink, A., Radford, K.J., Melief, C., Hart, D.N., Dendritic cells in cancer immunotherapy (2008) Adv Cancer Res, 99, pp. 363-407
  • Banerjee, D.K., Dhodapkar, M.V., Matayeva, E., Steinman, R.M., Dhodapkar, K.M., Expansion of FOXP3 high regulatory T cells by human dendritic cells (DCs) in vitro and after injection of cytokine-matured DCs in myeloma patients (2006) Blood, 108 (8), pp. 2655-2661
  • Von Euw, E.M., Barrio, M.M., Furman, D., Levy, E.M., Bianchini, M., Peguillet, I., Phase I clinical study of vaccination of melanoma patients with dendritic cells loaded with allogeneic apoptotic/necrotic melanoma cells. Analysis of toxicity and immune response to the vaccine and of IL-10-1082 promoter genotype as predictor of disease progression (2008) J Transl Med, 6 (6)
  • Aarntzen, J.G., Figdor, C.G., Adema, G.J., Punt, C.J., De Vries, J.M., Dendritic cell vaccination and immune monitoring (2008) Cancer Immunol Immunother, 57 (10), pp. 1559-1568
  • Palucka, A.K., Ueno, H., Fay, J., Banchereau, J., Dendritic cells: a critical player in cancer therapy? (2008) J Immunother, 31, pp. 793-805
  • Kalantari, T., Kamali-Sarvestani, E., Ciric, B., Karimi, M.H., Kalantari, M., Faridar, A., Generation of immunogenic and tolerogenic clinical-grade dendritic cells (2011) Immunol Res, 51 (2-3), pp. 153-160
  • Aptsiauri, N., Cabrera, T., Garcia-Lora, A., Garrido, F., Cancer immune escape: implications for immunotherapy (2012) Cancer Immunol Immunother, 121, pp. 123-1219
  • Madorsky-Rowdo, F.P., Lacreu, M.L., Mordoh, J., Melanoma vaccines and modulation of the immune system in the clinical setting: building from new realities (2012) Frontiers in immunology, 3, p. 103
  • Lesterhuis, W.J., de Vries, I.J., Adema, G.J., Punt, C.J., Dendritic cell-based vaccines in cancer immunotherapy: an update on clinical and immunological results (2004) Ann Oncol, 15 (4), pp. iv145-iv151
  • Nakai, N., Hartmann, G., Kishimoto, S., Katoh, N., Dendritic cell vaccination in human melanoma: relationships between clinical effects and vaccine parameters (2010) Pigment Cell Melanoma Res, 23, pp. 607-619
  • Iwashita, Y., Tahara, K., Goto, S., Sasaki, A., Kai, S., Seike, M., A phase I study of autologous dendritic cell-based immunotherapy for patients with unresectable primary liver cancer (2003) Cancer Immunol Immunother, 52, pp. 155-161
  • Sims, R.B., Development of sipuleucel-T: autologous cellular immunotherapy for the treatment of metastatic castrate resistant prostate cancer (2012) Vaccine, 30 (29), pp. 4394-4397
  • Culshaw, S., Millington, O.R., Brewer, J.M., McInnes, I.B., Murine neutrophils present class II restricted antigen (2008) Immunol Lett, 118, pp. 49-54
  • Abi Abdallah, D.S., Egan, C.E., Butcher, B.A., Denkers, E.Y., Mouse neutrophils are professional antigen-presenting cells programmed to instruct Th1 and Th17 T-cell differentiation (2011) Int Immunol, 23 (5), pp. 317-326
  • Beauvillain, C., Cunin, P., Doni, A., Scotet, M., Jaillon, S., Loiry, M.L., CCR7 is involved in the migration of neutrophils to lymph nodes (2010) Gen Virol, 91, pp. 2158-2166
  • Mikhak, Z., Luster, A.D., The emergence of basophils as antigen-presenting cells in Th2 inflammatory responses (2009) J Mol Cell Biol, 1 (2), pp. 69-71
  • Van Gisbergen, K.P., Sanchez-Hernandez, M., Geijtenbeek, T.B., Van Kooyk, Y., Neutrophils mediate immune modulation of dendritic cells through glycosylation dependent interactions between Mac-1 and DC-SIGN (2005) J Exp Med, 201 (8), pp. 1281-1292
  • Kumar, V., Sharma, A., Neutrophils: cinderella of innate immune system (2010) Int Immunopharmacol, 10, pp. 1325-1334
  • Terrin, E., Beaman, B.L., Interferon-C activation of polymorphonuclear neutrophil function (2004) Immunology, 112, pp. 2-12
  • Perrigoue, J.G., Saenz, S.A., Siracusa, M.C., Allenspach, E.J., Taylor, B.C., Giacomin, P.R., Major histocompatibility complex class II-dependent basophil-CD4+ T cell interactions promote TH2 cytokine-dependent immunity (2009) Nat Immunol, 10 (7), pp. 697-705
  • Lotfi, R., Lotze, T., Eosinophils induce DC maturation, regulating immunity (2008) J Leukoc Biol, 83, pp. 456-460
  • Mac Keon, S., Gazzaniga, S., Mallerman, J., Bravo, A.I., Mordoh, J., Wainstok, R., Vaccination with dendritic cells charged with apoptotic/necrotic B16 melanoma induces the formation of subcutaneous lymphoid tissue (2010) Vaccine, 28, pp. 8162-8168
  • Romero, C.D., Varma, T.K., Hobbs, J.B., Reyes, A., Driver, B., Sherwood, E.R., The toll-like receptor 4 agonist monophosphoryl lipid A augments innate host resistance to systemic bacterial infection (2011) Infect Immun, 79 (9), pp. 3576-3587
  • Boxio, R., Bossenmeyer, C., Steinckwich, N., Dournon, C., Nube, O., Mouse bone marrow contains large numbers of functionally competent neutrophils (2004) J Leukoc Biol, 75, pp. 604-611
  • Kozo, Y., Yukio, S., Motoki, I., Haruo, N., Takashi, Y., Atsushi, K., Granulocyte macrophage-colony stimulating factor delays neutrophil apoptosis and primes its function through Ia-type phosphoinositide 3-kinase (2002) J Leukoc Biol, 72, pp. 1020-1026
  • Costantini, C., Micheletti, A., Calzetti, F., Perbellini, O., Pizzolo, G., Cassatella, M.A., Neutrophil activation and survival are modulated by interaction with NK cells (2010) Int Immunol, 22 (10), pp. 827-838
  • Gilliet, M., Boonstra, A., Paturel, C., Antonenko, S., Xu, X., Trinchieri, G., The development of murine plasmacytoid dendritic cell precursors is differentially regulated by FLT3-ligand and granulocyte/macrophage colony-stimulating factor (2002) J. Exp Med, 195, pp. 953-958
  • Maruyama, K., Ii, M., Cursiefen, C., Jackson, D.G., Keino, H., Tomita, M., Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages (2005) J Clin Invest, 115 (9), pp. 2363-2372
  • Wu, L., Liu, Y.J., Development of dendritic-cell lineages (2007) Immunity, 26, pp. 741-750
  • Miloud, T., Hammerling, G.J., Garbio, N., Review of murine dendritic cells: types, location, and development (2010) Methods Mol Biol, 595, pp. 21-42
  • Hume, D.A., Macrophages as APC and the dendritic cell myth (2008) J Immunol, 181, pp. 5829-5835
  • Steinman, R.M., Turley, S., Mellman, I., Inaba, K., The induction of tolerance by dendritic cells that have captured apoptotic cells (2000) J Exp Med, 191 (3), pp. 411-416
  • Sauter, B., Albert, M.L., Francisco, L., Larsson, M., Somersan, S., Bhardwaj, N., Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells (2000) J Exp Med, 191 (3), pp. 7423-7433
  • Bennouna, S., Bliss, S.K., Curiel, T.J., Denkers, E.Y., Microbial infection activation of dendritic cells during neutrophils instruct recruitment and cross-talk in the innate immune system (2003) J Immunol, 171, pp. 6052-6058
  • Megiovanni, A.M., Sanchez, F., Robledo-Sarmiento, M., Morel, C., Gluckman, J.C., Boudaly, S., Polymorphonuclear neutrophils deliver activation signals and antigenic molecules to dendritic cells: a new link between leukocytes upstream of T lymphocytes (2006) J Leukoc Biol, 79, pp. 977-988
  • Scapini, P., Lapinet-Vera, J.A., Gasperini, S., Calzetti, F., Bazzoni, F., Cassatella, M.A., The neutrophil as a cellular source of chemokines (2000) Immunol Rev, 177, pp. 195-203
  • Van Gisbergen, K.P., Geijtenbeek, T.B., Van Kooyk, Y., Close encounters of neutrophils and DCs (2005) Trends Immunol, 26 (12), pp. 626-631
  • Park, S.J., Burdick, M.D., Mehrad, B., Neutrophils mediate maturation and efflux of lung dendritic cells in response to Aspergillus fumigatus germ tubes (2012) Infect Immunol, 80 (5), pp. 1759-1765
  • Ludwig, I.S., Geijtenbeek, T.B., Van Kooyk, Y., Two-way communication between neutrophils and dendritic cells (2006) Curr Opin Pharmacol, 6, pp. 408-413

Citas:

---------- APA ----------
Campisano, S., Mac Keon, S., Gazzaniga, S., Ruiz, M.S., Traian, M.D., Mordoh, J. & Wainstok, R. (2013) . Anti-melanoma vaccinal capacity of CD11c-positive and -negative cell populations present in GM-CSF cultures derived from murine bone marrow precursors. Vaccine, 31(2), 354-361.
http://dx.doi.org/10.1016/j.vaccine.2012.10.114
---------- CHICAGO ----------
Campisano, S., Mac Keon, S., Gazzaniga, S., Ruiz, M.S., Traian, M.D., Mordoh, J., et al. "Anti-melanoma vaccinal capacity of CD11c-positive and -negative cell populations present in GM-CSF cultures derived from murine bone marrow precursors" . Vaccine 31, no. 2 (2013) : 354-361.
http://dx.doi.org/10.1016/j.vaccine.2012.10.114
---------- MLA ----------
Campisano, S., Mac Keon, S., Gazzaniga, S., Ruiz, M.S., Traian, M.D., Mordoh, J., et al. "Anti-melanoma vaccinal capacity of CD11c-positive and -negative cell populations present in GM-CSF cultures derived from murine bone marrow precursors" . Vaccine, vol. 31, no. 2, 2013, pp. 354-361.
http://dx.doi.org/10.1016/j.vaccine.2012.10.114
---------- VANCOUVER ----------
Campisano, S., Mac Keon, S., Gazzaniga, S., Ruiz, M.S., Traian, M.D., Mordoh, J., et al. Anti-melanoma vaccinal capacity of CD11c-positive and -negative cell populations present in GM-CSF cultures derived from murine bone marrow precursors. Vaccine. 2013;31(2):354-361.
http://dx.doi.org/10.1016/j.vaccine.2012.10.114