Artículo

Martinez, L.M.; Vallone, V.B.F.; Labovsky, V.; Choi, H.; Hofer, E.L.; Feldman, L.; Bordenave, R.H.; Batagelj, E.; Dimase, F.; Villafañe, A.R.; Chasseing, N.A. "Changes in the peripheral blood and bone marrow from untreated advanced breast cancer patients that are associated with the establishment of bone metastases" (2014) Clinical and Experimental Metastasis. 31(2):213-232
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Bone metastasis is an incurable complication of breast cancer affecting 70-80 % of advanced patients. It is a multistep process that includes tumour cell mobilisation, intravasation, survival in the circulation, extravasation, migration and proliferation in the bone marrow/bone. Although novel findings demonstrate the bone marrow microenvironment significance in bone metastatic progression, a majority of studies have focused on end-stage disease and little is known about how the pre-metastatic niche arises in the bone marrow/bone tissues. We demonstrated a significant increase in patients' peripheral blood plasma ability to induce transendothelial migration of MCF-7 cells compared with healthy volunteers. Moreover, high RANKL, MIF and OPG levels in patients' peripheral blood could play a role in the intravasation, angiogenesis, survival and epithelial-mesenchymal transition of circulating tumour cells. Also, we observed a significant increase in patients' bone marrow plasma capacity to induce transendothelial migration of MDA-MB231 and MCF-7 cells compared with healthy volunteers. Furthermore, patients' bone marrow mesenchymal stem cells could control the recruitment of tumour cells, modifying the MCF-7 and MDA-MB231 cell migration. In addition, we found a significantly higher MDA-MB231 cell proliferation when we used patients' bone marrow plasma compared with healthy volunteers. Interestingly, PDGF-AB, ICAM-1 and VCAM-1 levels in patients' bone marrow were significantly higher than the values of healthy volunteers, suggesting that they could be involved in the cancer cell extravasation, bone resorption and cancer cell proliferation. We believe that these results can reveal new information about what alterations happen in the bone marrow of advanced breast cancer patients before bone colonisation, changes that create optimal soil for the metastatic cascade progression. © 2013 Springer Science+Business Media Dordrecht.

Registro:

Documento: Artículo
Título:Changes in the peripheral blood and bone marrow from untreated advanced breast cancer patients that are associated with the establishment of bone metastases
Autor:Martinez, L.M.; Vallone, V.B.F.; Labovsky, V.; Choi, H.; Hofer, E.L.; Feldman, L.; Bordenave, R.H.; Batagelj, E.; Dimase, F.; Villafañe, A.R.; Chasseing, N.A.
Filiación:Immunohematology Laboratory, Experimental Biology and Medicine Institute (IBYME), National Council of Scientific and Technical Research (CONICET), 2490 Vuelta de Obligado, 1428 Ciudad Autónoma de Buenos Aires Buenos Aires, Argentina
Texas AandM Health Science Center, College of Medicine, Institute for Regenerative Medicine at Scott and White, 5701 Airport Road, Temple, TX 76502, United States
Department of Bone Marrow Transplantation, Favaloro Fundation, 443 Solis, 1428 Ciudad Autónoma de Buenos Aires Buenos Aires, Argentina
Department of Oncology, Iriarte Hospital, 770 Alison Bell, 1878 Quilmes Buenos Aires, Argentina
Department of Oncology, Central Militar Hospital, 726 Luis María Campos, 1426 Ciudad Autónoma de Buenos Aires Buenos Aires, Argentina
Department of Hemotherapy, Central Militar Hospital, 726 Luis María Campos, 1426 Ciudad Autónoma de Buenos Aires Buenos Aires, Argentina
Department of Diagnosis and Treatment, Central Militar Hospital, 726 Luis María Campos, 1426 Ciudad Autónoma de Buenos Aires Buenos Aires, Argentina
Palabras clave:Bone marrow; Bone metastasis; Breast cancer; Mesenchymal stem cells; Pre-metastatic niche; Apoptosis; Bone Marrow; Bone Neoplasms; Breast Neoplasms; Cell Line, Tumor; Cell Proliferation; Enzyme-Linked Immunosorbent Assay; Female; Humans; Immunohistochemistry; Neoplasm Metastasis
Año:2014
Volumen:31
Número:2
Página de inicio:213
Página de fin:232
DOI: http://dx.doi.org/10.1007/s10585-013-9622-5
Título revista:Clinical and Experimental Metastasis
Título revista abreviado:Clin. Exp. Metastasis
ISSN:02620898
CODEN:CEXMD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02620898_v31_n2_p213_Martinez

Referencias:

  • Shimamura, T., Amizuka, N., Li, M., Freitas, P.H., White, J.H., Henderson, J.E., Shingaki, S., Ozawa, H., Histological observations on the microenvironment of osteolytic bone metastasis by breast carcinoma cell line (2005) Biomed Res, 26, pp. 159-172. , 1:CAS:528:DC%2BD2MXhtVSjs7nF 16152732 10.2220/biomedres.26.159
  • Scheel, C., Weinberg, R.A., Cancer stem cells and epithelial-mesenchymal transition: Concepts and molecular links (2012) Semin Cancer Biol, 22, pp. 396-403. , 10.1016/j.semcancer.2012.04.001 1:CAS:528:DC%2BC38XhtlOju7bM 22554795 10.1016/j.semcancer.2012.04.001
  • Van Der Pluijm, G., Que, I., Sijmons, B., Buijs, J.T., Lowik, C.W., Wetterwald, A., Thalmann, G.N., Cecchini, M.G., Interference with the microenvironmental support impairs the de novo formation of bone metastases in vivo (2005) Cancer Res, 65, pp. 7682-7690. , 65/17/7682 16140935
  • Peinado, H., Lavotshkin, S., Lyden, D., The secreted factors responsible for pre-metastatic niche formation: Old sayings and new thoughts (2011) Semin Cancer Biol, 21, pp. 139-146. , 10.1016/j.semcancer.2011.01.002 1:CAS:528:DC%2BC3MXjs1Crtbs%3D 21251983 10.1016/j.semcancer.2011.01.002
  • Paget, S., The distribution of secondary growths in cancer of the breast (1889) Lancet, 133, pp. 571-573. , 10.1016/S0140-6736(00)49915-0
  • Yoneda, T., Sasaki, A., Mundy, G.R., Osteolytic bone metastasis in breast cancer (1994) Breast Cancer Res Treat, 32, pp. 73-84. , 1:STN:280:DyaK2M7hvFCiuw%3D%3D 7819589 10.1007/BF00666208
  • Sanderson, R.D., Yang, Y., Suva, L.J., Kelly, T., Heparan sulfate proteoglycans and heparanase-partners in osteolytic tumor growth and metastasis (2004) Matrix Biol, 23, pp. 341-352. , S0945-053X(04)00100-3 1:CAS:528:DC%2BD2cXpsVOrurY%3D 15533755 10.1016/j.matbio.2004.08.004
  • Sosnoski, D.M., Krishnan, V., Kraemer, W.J., Dunn-Lewis, C., Mastro, A.M., Changes in cytokines of the bone microenvironment during breast cancer metastasis (2012) Int J Breast Cancer, 2012, p. 160265. , 10.1155/2012/160265 3270522 22315691 10.1155/2012/160265
  • Boyce, B.F., Xing, L., Functions of RANKL/RANK/OPG in bone modeling and remodeling (2008) Arch Biochem Biophys, 473, pp. 139-146. , 10.1016/j.abb.2008.03.018 1:CAS:528:DC%2BD1cXlsFOgt7c%3D 2413418 18395508 10.1016/j.abb.2008.03.018
  • Hofbauer, L.C., Rachner, T., Singh, S.K., Fatal attraction: Why breast cancer cells home to bone (2008) Breast Cancer Res, 10, p. 101. , 10.1186/bcr1848 2374958 18226190 10.1186/bcr1848
  • Jones, D.H., Nakashima, T., Sanchez, O.H., Kozieradzki, I., Komarova, S.V., Sarosi, I., Morony, S., Penninger, J.M., Regulation of cancer cell migration and bone metastasis by RANKL (2006) Nature, 440, pp. 692-696. , nature04524 1:CAS:528:DC%2BD28XivFWgtb8%3D 16572175 10.1038/nature04524
  • Santini, D., Perrone, G., Roato, I., Godio, L., Pantano, F., Grasso, D., Russo, A., Tonini, G., Expression pattern of receptor activator of NFkappaB (RANK) in a series of primary solid tumors and related bone metastases (2011) J Cell Physiol, 226, pp. 780-784. , 10.1002/jcp.22402 1:CAS:528:DC%2BC3cXhs1agsb%2FF 20857484 10.1002/jcp.22402
  • Azim, H., Azim, Jr.H.A., Targeting RANKL in breast cancer: Bone metastasis and beyond (2013) Expert Rev Anticancer Ther, 13, pp. 195-201. , 10.1586/era.12.177 1:CAS:528:DC%2BC3sXitl2ltrs%3D 23406560 10.1586/era.12.177
  • Bando, H., Matsumoto, G., Bando, M., Muta, M., Ogawa, T., Funata, N., Nishihira, J., Toi, M., Expression of macrophage migration inhibitory factor in human breast cancer: Association with nodal spread (2002) Jpn J Cancer Res, 93, pp. 389-396. , 1:CAS:528:DC%2BD38Xks1Ojt7o%3D 11985788 10.1111/j.1349-7006.2002.tb01269. x
  • Bernhagen, J., Krohn, R., Lue, H., Gregory, J.L., Zernecke, A., Koenen, R.R., Dewor, M., Weber, C., MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment (2007) Nat Med, 13, pp. 587-596. , nm1567 1:CAS:528:DC%2BD2sXkvVOhu7s%3D 17435771 10.1038/nm1567
  • Verjans, E., Noetzel, E., Bektas, N., Schutz, A.K., Lue, H., Lennartz, B., Hartmann, A., Bernhagen, J., Dual role of macrophage migration inhibitory factor (MIF) in human breast cancer (2009) BMC Cancer, 9, p. 230. , 10.1186/1471-2407-9-230 2716369 19602265 10.1186/1471-2407-9-230
  • Labovsky, V., Vallone, V.B., Martinez, L.M., Otaegui, J., Chasseing, N.A., Expression of osteoprotegerin, receptor activator of nuclear factor kappa-B ligand, tumor necrosis factor-related apoptosis-inducing ligand, stromal cell-derived factor-1 and their receptors in epithelial metastatic breast cancer cell lines (2012) Cancer Cell Int, 12, p. 29. , 10.1186/1475-2867-12-29 1:CAS:528:DC%2BC38XhslKjtb%2FN 3478192 22709548 10.1186/1475-2867-12-29
  • Cross, S.S., Yang, Z., Brown, N.J., Balasubramanian, S.P., Evans, C.A., Woodward, J.K., Neville-Webbe, H.L., Holen, I., Osteoprotegerin (OPG) - A potential new role in the regulation of endothelial cell phenotype and tumour angiogenesis? (2006) Int J Cancer, 118, pp. 1901-1908. , 10.1002/ijc.21606 1:CAS:528:DC%2BD28Xjt1Gqtbw%3D 16287088 10.1002/ijc.21606
  • Xu, X., Wang, B., Ye, C., Yao, C., Lin, Y., Huang, X., Zhang, Y., Wang, S., Overexpression of macrophage migration inhibitory factor induces angiogenesis in human breast cancer (2008) Cancer Lett, 261, pp. 147-157. , 10.1016/j.canlet.2007.11.028 1:CAS:528:DC%2BD1cXitlemt7c%3D 18171602 10.1016/j.canlet.2007.11.028
  • Zinonos, I., Labrinidis, A., Lee, M., Liapis, V., Hay, S., Ponomarev, V., Diamond, P., Evdokiou, A., Anticancer efficacy of Apo2L/TRAIL is retained in the presence of high and biologically active concentrations of osteoprotegerin in vivo (2011) J Bone Miner Res, 26, pp. 630-643. , 10.1002/jbmr.244 1:CAS:528:DC%2BC3MXjt1Wqtr4%3D 20818644 10.1002/jbmr.244
  • Lue, H., Thiele, M., Franz, J., Dahl, E., Speckgens, S., Leng, L., Fingerle-Rowson, G., Bernhagen, J., Macrophage migration inhibitory factor (MIF) promotes cell survival by activation of the Akt pathway and role for CSN5/JAB1 in the control of autocrine MIF activity (2007) Oncogene, 26, pp. 5046-5059. , 1210318 1:CAS:528:DC%2BD2sXosVemu7k%3D 17310986 10.1038/sj.onc.1210318
  • Onodera, S., Sasaki, S., Ohshima, S., Amizuka, N., Li, M., Udagawa, N., Irie, K., Yasuda, K., Transgenic mice overexpressing macrophage migration inhibitory factor (MIF) exhibit high-turnover osteoporosis (2006) J Bone Miner Res, 21, pp. 876-885. , 10.1359/jbmr.060310 1:CAS:528:DC%2BD28XlvVamur8%3D 16753018 10.1359/jbmr.060310
  • Soria, G., Ofri-Shahak, M., Haas, I., Yaal-Hahoshen, N., Leider-Trejo, L., Leibovich-Rivkin, T., Weitzenfeld, P., Ben-Baruch, A., Inflammatory mediators in breast cancer: Coordinated expression of TNFalpha & IL-1beta with CCL2 & CCL5 and effects on epithelial-to- mesenchymal transition (2011) BMC Cancer, 11, p. 130. , 10.1186/1471-2407-11-130 1:CAS:528:DC%2BC3MXltV2hur8%3D 3095565 21486440 10.1186/1471-2407-11-130
  • Van Der Pluijm, G., Epithelial plasticity, cancer stem cells and bone metastasis formation (2011) Bone, 48, pp. 37-43. , 10.1016/j.bone.2010.07.023 20670698 10.1016/j.bone.2010.07.023
  • Wang, J., Loberg, R., Taichman, R.S., The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis (2006) Cancer Metastasis Rev, 25, pp. 573-587. , 10.1007/s10555-006-9019-x 1:CAS:528:DC%2BD2sXisVyrsA%3D%3D 17165132 10.1007/s10555-006-9019-x
  • Miles, F.L., Pruitt, F.L., Van Golen, K.L., Cooper, C.R., Stepping out of the flow: Capillary extravasation in cancer metastasis (2008) Clin Exp Metastasis, 25, pp. 305-324. , 10.1007/s10585-007-9098-2 1:CAS:528:DC%2BD1cXptVSqu7o%3D 17906932 10.1007/s10585-007-9098-2
  • Kobayashi, H., Boelte, K.C., Lin, P.C., Endothelial cell adhesion molecules and cancer progression (2007) Curr Med Chem, 14, pp. 377-386. , 1:CAS:528:DC%2BD2sXhs1yhur0%3D 17305540 10.2174/092986707779941032
  • Strell, C., Entschladen, F., Extravasation of leukocytes in comparison to tumor cells (2008) Cell Commun Signal, 6, p. 10. , 10.1186/1478-811X-6-10 2627905 19055814 10.1186/1478-811X-6-10
  • Strell, C., Lang, K., Niggemann, B., Zaenker, K.S., Entschladen, F., Surface molecules regulating rolling and adhesion to endothelium of neutrophil granulocytes and MDA-MB-468 breast carcinoma cells and their interaction (2007) Cell Mol Life Sci, 64, pp. 3306-3316. , 10.1007/s00018-007-7402-6 1:CAS:528:DC%2BD1cXmtVyktw%3D%3D 17994288 10.1007/s00018-007-7402-6
  • Li, D.M., Feng, Y.M., Signaling mechanism of cell adhesion molecules in breast cancer metastasis: Potential therapeutic targets (2011) Breast Cancer Res Treat, 128, pp. 7-21. , 10.1007/s10549-011-1499-x 1:CAS:528:DC%2BC3MXnsVWlsrs%3D 21499686 10.1007/s10549-011-1499-x
  • Zhang, G.J., Adachi, I., Serum levels of soluble intercellular adhesion molecule-1 and E-selectin in metastatic breast carcinoma: Correlations with clinicopathological features and prognosis (1999) Int J Oncol, 14, pp. 71-77. , 9863011
  • Chen, Q., Massague, J., Molecular pathways: VCAM-1 as a potential therapeutic target in metastasis (2012) Clin Cancer Res, 18, pp. 5520-5525. , 10.1158/1078-0432.CCR-11-2904 1:CAS:528:DC%2BC38XhsFahu73P 3473104 22879387 10.1158/1078-0432.CCR-11-2904
  • O'Hanlon, D.M., Fitzsimons, H., Lynch, J., Tormey, S., Malone, C., Given, H.F., Soluble adhesion molecules (E-selectin, ICAM-1 and VCAM-1) in breast carcinoma (2002) Eur J Cancer, 38, pp. 2252-2257. , S0959804902002186 12441261 10.1016/S0959-8049(02)00218-6
  • Silva, H.C., Garcao, F., Coutinho, E.C., De Oliveira, C.F., Regateiro, F.J., Soluble VCAM-1 and E-selectin in breast cancer: Relationship with staging and with the detection of circulating cancer cells (2006) Neoplasma, 53, pp. 538-543. , 1:CAS:528:DC%2BD2sXhsVOlsbg%3D 17167725
  • Simons, D., Grieb, G., Hristov, M., Pallua, N., Weber, C., Bernhagen, J., Steffens, G., Hypoxia-induced endothelial secretion of macrophage migration inhibitory factor and role in endothelial progenitor cell recruitment (2011) J Cell Mol Med, 15, pp. 668-678. , 10.1111/j.1582-4934.2010.01041.x 1:CAS:528:DC%2BC3MXmslWlsr8%3D 20178462 10.1111/j.1582-4934.2010.01041.x
  • Asare, Y., Schmitt, M., Bernhagen, J., The vascular biology of macrophage migration inhibitory factor (MIF). Expression and effects in inflammation, atherogenesis and angiogenesis (2013) Thromb Haemost, 109, pp. 391-398. , 10.1160/TH12-11-0831 1:CAS:528:DC%2BC3sXksVKjsL8%3D 23329140 10.1160/TH12-11-0831
  • Brown, L.F., Detmar, M., Claffey, K., Nagy, J.A., Feng, D., Dvorak, A.M., Dvorak, H.F., Vascular permeability factor/vascular endothelial growth factor: A multifunctional angiogenic cytokine (1997) EXS, 79, pp. 233-269. , 1:CAS:528:DyaK2sXos1Gmtg%3D%3D 9002222
  • Lev, D.C., Kim, S.J., Onn, A., Stone, V., Nam, D.H., Yazici, S., Fidler, I.J., Price, J.E., Inhibition of platelet-derived growth factor receptor signaling restricts the growth of human breast cancer in the bone of nude mice (2005) Clin Cancer Res, 11, pp. 306-314. , 11/1/306 1:CAS:528:DC%2BD2MXhtVegtrc%3D 15671560
  • Joensuu, K., Heikkila, P., Andersson, L.C., Tumor dormancy: Elevated expression of stanniocalcins in late relapsing breast cancer (2008) Cancer Lett, 265, pp. 76-83. , 10.1016/j.canlet.2008.02.022 1:CAS:528:DC%2BD1cXlvFyhsLc%3D 18355956 10.1016/j.canlet.2008.02.022
  • Neville-Webbe, H.L., Cross, N.A., Eaton, C.L., Nyambo, R., Evans, C.A., Coleman, R.E., Holen, I., Osteoprotegerin (OPG) produced by bone marrow stromal cells protects breast cancer cells from TRAIL-induced apoptosis (2004) Breast Cancer Res Treat, 86, pp. 269-279. , 5272468 1:CAS:528:DC%2BD2cXmt1Kqtro%3D 15567943 10.1023/B:BREA. 0000036900.48763.b3
  • Zhang, Y., Zhang, B., TRAIL resistance of breast cancer cells is associated with constitutive endocytosis of death receptors 4 and 5 (2008) Mol Cancer Res, 6, pp. 1861-1871. , 10.1158/1541-7786.MCR-08-0313 1:CAS:528:DC%2BD1cXhsV2iu7bM 19074831 10.1158/1541-7786.MCR-08-0313
  • Sanlioglu, A.D., Dirice, E., Elpek, O., Korcum, A.F., Ozdogan, M., Suleymanlar, I., Balci, M.K., Sanlioglu, S., High TRAIL death receptor 4 and decoy receptor 2 expression correlates with significant cell death in pancreatic ductal adenocarcinoma patients (2009) Pancreas, 38, pp. 154-160. , 10.1097/MPA.0b013e31818db9e3 1:CAS:528:DC%2BD1MXit1equro%3D 18981952 10.1097/MPA.0b013e31818db9e3
  • Van Poznak, C., Cross, S.S., Saggese, M., Hudis, C., Panageas, K.S., Norton, L., Coleman, R.E., Holen, I., Expression of osteoprotegerin (OPG), TNF related apoptosis inducing ligand (TRAIL), and receptor activator of nuclear factor kappaB ligand (RANKL) in human breast tumours (2006) J Clin Pathol, 59, pp. 56-63. , 59/1/56 16394281 10.1136/jcp.2005.026534
  • Lee, R.H., Yoon, N., Reneau, J.C., Prockop, D.J., Preactivation of human MSCs with TNF-alpha enhances tumor-suppressive activity (2012) Cell Stem Cell, 11, pp. 825-835. , 10.1016/j.stem.2012.10.001 1:CAS:528:DC%2BC38Xhs1Kjs7%2FK 23142520 10.1016/j.stem.2012.10.001
  • Buijs, J.T., Henriquez, N.V., Van Overveld, P.G., Van Der Horst, G., Ten Dijke, P., Van Der Pluijm, G., TGF-beta and BMP7 interactions in tumour progression and bone metastasis (2007) Clin Exp Metastasis, 24, pp. 609-617. , 10.1007/s10585-007-9118-2 1:CAS:528:DC%2BD1cXhvFGgtr8%3D 18008174 10.1007/s10585-007-9118-2
  • Buijs, J.T., Juarez, P., Guise, T.A., Therapeutic strategies to target TGF-beta in the treatment of bone metastases (2011) Curr Pharm Biotechnol, 12, pp. 2121-2137. , BSP/CPB/E-Pub/000235-12-16 1:CAS:528:DC%2BC38XovV2huw%3D%3D 21619539 10.2174/138920111798808293
  • Kalluri, R., Weinberg, R.A., The basics of epithelial-mesenchymal transition (2009) J Clin Invest, 119, pp. 1420-1428. , 10.1172/JCI39104 1:CAS:528:DC%2BD1MXntVCjtr0%3D 2689101 19487818 10.1172/JCI39104
  • Bonnomet, A., Brysse, A., Tachsidis, A., Waltham, M., Thompson, E.W., Polette, M., Gilles, C., Epithelial-to-mesenchymal transitions and circulating tumor cells (2010) J Mammary Gland Biol Neoplasia, 15, pp. 261-273. , 10.1007/s10911-010-9174-0 20449641 10.1007/s10911-010-9174-0
  • Palafox, M., Ferrer, I., Pellegrini, P., Vila, S., Hernandez-Ortega, S., Urruticoechea, A., Climent, F., Gonzalez-Suarez, E., RANK induces epithelial-mesenchymal transition and stemness in human mammary epithelial cells and promotes tumorigenesis and metastasis (2012) Cancer Res, 72, pp. 2879-2888. , 10.1158/0008-5472.CAN-12-0044 1:CAS:528:DC%2BC38XnvVyjtrc%3D 22496457 10.1158/0008-5472.CAN-12-0044
  • Funamizu, N., Hu, C., Lacy, C., Schetter, A., Zhang, G., He, P., Gaedcke, J., Hussain, S.P., Macrophage migration inhibitory factor induces epithelial to mesenchymal transition, enhances tumor aggressiveness and predicts clinical outcome in resected pancreatic ductal adenocarcinoma (2012) Int J Cancer Doi, , 10.1002/ijc.27736
  • Mohsin, S.K., Weiss, H., Havighurst, T., Clark, G.M., Berardo, M., Le Roanh, D., To, T.V., Allred, D.C., Progesterone receptor by immunohistochemistry and clinical outcome in breast cancer: A validation study (2004) Mod Pathol, 17, pp. 1545-1554. , 10.1038/modpathol.3800229 1:CAS:528:DC%2BD2cXhtFGmsL3O 15272277 10.1038/modpathol.3800229
  • Hammond, M.E., Hayes, D.F., Dowsett, M., Allred, D.C., Hagerty, K.L., Badve, S., Fitzgibbons, P.L., Wolff, A.C., American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer (2010) J Clin Oncol, 28, pp. 2784-2795. , 10.1200/JCO.2009.25.6529 20404251 10.1200/JCO.2009.25.6529
  • Chirgwin, J.M., The stem cell niche as a pharmaceutical target for prevention of skeletal metastases (2012) Anticancer Agents Med Chem, 12, pp. 187-193. , BSP/ACAMC/E-Pub/00258 1:CAS:528:DC%2BC38XktFWisLw%3D 22044002 10.2174/187152012800228797
  • Hofer, E.L., Labovsky, V., La Russa, V., Vallone, V.F., Honegger, A.E., Belloc, C.G., Wen, H.C., Chasseing, N.A., Mesenchymal stromal cells, colony-forming unit fibroblasts, from bone marrow of untreated advanced breast and lung cancer patients suppress fibroblast colony formation from healthy marrow (2010) Stem Cells Dev, 19, pp. 359-370. , 10.1089/scd 1:CAS:528:DC%2BC3cXjtlGgsrc%3D 19388812 10.1089/scd.2008.0375 2008.0375
  • Corcoran, K.E., Trzaska, K.A., Fernandes, H., Bryan, M., Taborga, M., Srinivas, V., Packman, K., Rameshwar, P., Mesenchymal stem cells in early entry of breast cancer into bone marrow (2008) PLoS One, 3, p. 2563. , 10.1371/journal.pone.0002563 2430536 18575622 10.1371/journal.pone. 0002563
  • Lorusso, G., Ruegg, C., The tumor microenvironment and its contribution to tumor evolution toward metastasis (2008) Histochem Cell Biol, 130, pp. 1091-1103. , 10.1007/s00418-008-0530-8 1:CAS:528:DC%2BD1cXhsVSjsr3N 18987874 10.1007/s00418-008-0530-8
  • Kindle, L., Rothe, L., Kriss, M., Osdoby, P., Collin-Osdoby, P., Human microvascular endothelial cell activation by IL-1 and TNF-alpha stimulates the adhesion and transendothelial migration of circulating human CD14+monocytes that develop with RANKL into functional osteoclasts (2006) J Bone Miner Res, 21, pp. 193-206. , 10.1359/JBMR.051027 1:CAS:528:DC%2BD28Xhs1KmurY%3D 16418775 10.1359/JBMR.051027
  • Monteiro, A.C., Leal, A.C., Goncalves-Silva, T., Mercadante, A.C., Kestelman, F., Chaves, S.B., Azevedo, R.B., Bonomo, A., T cells induce pre-metastatic osteolytic disease and help bone metastases establishment in a mouse model of metastatic breast cancer (2013) PLoS One, 8, p. 68171. , 10.1371/journal.pone.0068171 1:CAS:528:DC%2BC3sXht1WmtL%2FJ 3730734 23935856 10.1371/journal.pone.0068171
  • Paduch, R., Walter-Croneck, A., Zdzisinska, B., Szuster-Ciesielska, A., Kandefer-Szerszen, M., Role of reactive oxygen species (ROS), metalloproteinase-2 (MMP-2) and interleukin-6 (IL-6) in direct interactions between tumour cell spheroids and endothelial cell monolayer (2005) Cell Biol Int, 29, pp. 497-505. , S1065-6995(05)00049-1 1:CAS:528:DC%2BD2MXnslymu7k%3D 15893483 10.1016/j.cellbi.2005.01.007
  • De Cavanagh, E.M., Honegger, A.E., Hofer, E., Bordenave, R.H., Bullorsky, E.O., Chasseing, N.A., Fraga, C., Higher oxidation and lower antioxidant levels in peripheral blood plasma and bone marrow plasma from advanced cancer patients (2002) Cancer, 94, pp. 3247-3251. , 10.1002/cncr.10611 12115357 10.1002/cncr.10611
  • Gho, Y.S., Kleinman, H.K., Sosne, G., Angiogenic activity of human soluble intercellular adhesion molecule-1 (1999) Cancer Res, 59, pp. 5128-5132. , 1:CAS:528:DyaK1MXmvFels7w%3D 10537287
  • Lawson, C., Wolf, S., ICAM-1 signaling in endothelial cells (2009) Pharmacol Rep, 61, pp. 22-32. , 1:CAS:528:DC%2BD1MXhtFCkurfL 19307690
  • Goldstein, R.H., Reagan, M.R., Anderson, K., Kaplan, D.L., Rosenblatt, M., Human bone marrow-derived MSCs can home to orthotopic breast cancer tumors and promote bone metastasis (2010) Cancer Res, 70, pp. 10044-10050. , 10.1158/0008-5472.CAN-10-1254 1:CAS:528:DC%2BC3cXhsFGrt7rK 3017423 21159629 10.1158/0008-5472.CAN-10-1254
  • Dirks, R.P., Bloemers, H.P., Signals controlling the expression of PDGF (1995) Mol Biol Rep, 22, pp. 1-24. , 1:CAS:528:DyaK28XkvF2rsLk%3D 8858568 10.1007/BF00996300
  • Heldin, C.H., Westermark, B., Mechanism of action and in vivo role of platelet-derived growth factor (1999) Physiol Rev, 79, pp. 1283-1316. , 1:CAS:528:DyaK1MXmvVymtLY%3D 10508235
  • Yokoyama, Y., Mori, S., Hamada, Y., Hieda, M., Kawaguchi, N., Shaker, M., Tao, Y., Matsuura, N., Platelet-derived growth factor regulates breast cancer progression via beta-catenin expression (2011) Pathobiology, 78, pp. 253-260. , 10.1159/000328061 1:CAS:528:DC%2BC3MXht1yhsbzE 21849806 10.1159/000328061
  • Westphal, J.R., Van'T Hullenaar, R., Peek, R., Willems, R.W., Crickard, K., Crickard, U., Askaa, J., De Waal, R.M., Angiogenic balance in human melanoma: Expression of VEGF, bFGF, IL-8, PDGF and angiostatin in relation to vascular density of xenografts in vivo (2000) Int J Cancer, 86, pp. 768-776. , 10.1002/(SICI)1097-0215(20000615)86:6<768: AID-IJC3>3.0.CO;2-E 1:CAS:528:DC%2BD3cXksVOqtLo%3D 10842189 10.1002/(SICI)1097-0215(20000615)86: 6<768: AID-IJC3>3.0.CO;2-E
  • Tsirakis, G., Pappa, C.A., Kanellou, P., Stratinaki, M.A., Xekalou, A., Psarakis, F.E., Sakellaris, G., Alexandrakis, M.G., Role of platelet-derived growth factor-AB in tumour growth and angiogenesis in relation with other angiogenic cytokines in multiple myeloma (2012) Hematol Oncol, 30, pp. 131-136. , 10.1002/hon.1014 1:CAS:528:DC%2BC38XhtlemsLrF 21919032 10.1002/hon.1014
  • Chen, Y.C., Sosnoski, D.M., Mastro, A.M., Breast cancer metastasis to the bone: Mechanisms of bone loss (2010) Breast Cancer Res, 12, p. 215. , 10.1186/bcr2781 1:CAS:528:DC%2BC3MXjtlSmsw%3D%3D 3046443 21176175 10.1186/bcr2781
  • David Roodman, G., Role of stromal-derived cytokines and growth factors in bone metastasis (2003) Cancer, 97, pp. 733-738. , 10.1002/cncr.11148 1:STN:280:DC%2BD3s%2FjvFejtA%3D%3D 12548570 10.1002/cncr.11148
  • Zhang, Z., Chen, J., Jin, D., Platelet-derived growth factor (PDGF)-BB stimulates osteoclastic bone resorption directly: The role of receptor beta (1998) Biochem Biophys Res Commun, 251, pp. 190-194. , S0006-291X(98)99412-8 1:CAS:528:DyaK1cXmvFKitrk%3D 9790928 10.1006/bbrc.1998.9412
  • Fernandez Vallone, V.B., Hofer, E.L., Choi, H., Bordenave, R.H., Batagelj, E., Feldman, L., La Russa, V., Chasseing, N.A., Behaviour of mesenchymal stem cells from bone marrow of untreated advanced breast and lung cancer patients without bone osteolytic metastasis (2013) Clin Exp Metastasis, 30, pp. 317-332. , 10.1007/s10585-012-9539-4 23053744 10.1007/s10585-012-9539-4
  • Lu, X., Mu, E., Wei, Y., Riethdorf, S., Yang, Q., Yuan, M., Yan, J., Kang, Y., VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging alpha4beta1-positive osteoclast progenitors (2011) Cancer Cell, 20, pp. 701-714. , 10.1016/j.ccr.2011.11.002 1:CAS:528:DC%2BC3MXhs1Cit77P 3241854 22137794 10.1016/j.ccr.2011.11.002
  • Schneider, J.G., Amend, S.R., Weilbaecher, K.N., Integrins and bone metastasis: Integrating tumor cell and stromal cell interactions (2011) Bone, 48, pp. 54-65. , 10.1016/j.bone.2010.09.016 1:CAS:528:DC%2BC3cXhs1Wgu7rJ 3010439 20850578 10.1016/j.bone.2010.09.016
  • Bloemen, V., De Vries, T.J., Schoenmaker, T., Everts, V., Intercellular adhesion molecule-1 clusters during osteoclastogenesis (2009) Biochem Biophys Res Commun, 385, pp. 640-645. , 10.1016/j.bbrc.2009.05.145 1:CAS:528:DC%2BD1MXnsFKmsL8%3D 19501575 10.1016/j.bbrc.2009.05.145
  • Fernandes, J.C., Shi, Q., Benderdour, M., Lajeunesse, D., Lavigne, P., An active role for soluble and membrane intercellular adhesion molecule-1 in osteoclast activity in vitro (2008) J Bone Miner Metab, 26, pp. 543-550. , 10.1007/s00774-008-0866-0 1:CAS:528:DC%2BD1cXhtlWhtb%2FF 18979153 10.1007/s00774-008-0866-0
  • Takahashi, M., Furihata, M., Akimitsu, N., Watanabe, M., Kaul, S., Yumoto, N., Okada, T., A highly bone marrow metastatic murine breast cancer model established through in vivo selection exhibits enhanced anchorage-independent growth and cell migration mediated by ICAM-1 (2008) Clin Exp Metastasis, 25, pp. 517-529. , 10.1007/s10585-008-9163-5 1:CAS:528:DC%2BD1cXhtVWmsLbJ 18340424 10.1007/s10585-008-9163-5
  • Rosette, C., Roth, R.B., Oeth, P., Braun, A., Kammerer, S., Ekblom, J., Denissenko, M.F., Role of ICAM1 in invasion of human breast cancer cells (2005) Carcinogenesis, 26, pp. 943-950. , bgi070 1:CAS:528:DC%2BD2MXjsFOms7s%3D 15774488 10.1093/carcin/bgi070
  • Cross, S.S., Harrison, R.F., Balasubramanian, S.P., Lippitt, J.M., Evans, C.A., Reed, M.W., Holen, I., Expression of receptor activator of nuclear factor kappabeta ligand (RANKL) and tumour necrosis factor related, apoptosis inducing ligand (TRAIL) in breast cancer, and their relations with osteoprotegerin, oestrogen receptor, and clinicopathological variables (2006) J Clin Pathol, 59, pp. 716-720. , jcp.2005.030031 1:CAS:528:DC%2BD28XotFehu70%3D 16489180 10.1136/jcp.2005.030031
  • Kapoor, P., Suva, L.J., Welch, D.R., Donahue, H.J., Osteoprotegrin and the bone homing and colonization potential of breast cancer cells (2008) J Cell Biochem, 103, pp. 30-41. , 10.1002/jcb.21382 1:CAS:528:DC%2BD1cXnsVGgtg%3D%3D 17471510 10.1002/jcb.21382

Citas:

---------- APA ----------
Martinez, L.M., Vallone, V.B.F., Labovsky, V., Choi, H., Hofer, E.L., Feldman, L., Bordenave, R.H.,..., Chasseing, N.A. (2014) . Changes in the peripheral blood and bone marrow from untreated advanced breast cancer patients that are associated with the establishment of bone metastases. Clinical and Experimental Metastasis, 31(2), 213-232.
http://dx.doi.org/10.1007/s10585-013-9622-5
---------- CHICAGO ----------
Martinez, L.M., Vallone, V.B.F., Labovsky, V., Choi, H., Hofer, E.L., Feldman, L., et al. "Changes in the peripheral blood and bone marrow from untreated advanced breast cancer patients that are associated with the establishment of bone metastases" . Clinical and Experimental Metastasis 31, no. 2 (2014) : 213-232.
http://dx.doi.org/10.1007/s10585-013-9622-5
---------- MLA ----------
Martinez, L.M., Vallone, V.B.F., Labovsky, V., Choi, H., Hofer, E.L., Feldman, L., et al. "Changes in the peripheral blood and bone marrow from untreated advanced breast cancer patients that are associated with the establishment of bone metastases" . Clinical and Experimental Metastasis, vol. 31, no. 2, 2014, pp. 213-232.
http://dx.doi.org/10.1007/s10585-013-9622-5
---------- VANCOUVER ----------
Martinez, L.M., Vallone, V.B.F., Labovsky, V., Choi, H., Hofer, E.L., Feldman, L., et al. Changes in the peripheral blood and bone marrow from untreated advanced breast cancer patients that are associated with the establishment of bone metastases. Clin. Exp. Metastasis. 2014;31(2):213-232.
http://dx.doi.org/10.1007/s10585-013-9622-5