Artículo

Fernández Vallone, V.B.; Hofer, E.L.; Choi, H.; Bordenave, R.H.; Batagelj, E.; Feldman, L.; La Russa, V.; Caramutti, D.; Dimase, F.; Labovsky, V.; Martínez, L.M.; Chasseing, N.A. "Behaviour of mesenchymal stem cells from bone marrow of untreated advanced breast and lung cancer patients without bone osteolytic metastasis" (2013) Clinical and Experimental Metastasis. 30(3):317-332
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Tumour cells can find in bone marrow (BM) a niche rich in growth factors and cytokines that promote their self-renewal, proliferation and survival. In turn, tumour cells affect the homeostasis of the BM and bone, as well as the balance among haematopoiesis, osteogenesis, osteoclastogenesis and bone-resorption. As a result, growth and survival factors normally sequestered in the bone matrix are released, favouring tumour development. Mesenchymal stem cells (MSCs) from BM can become tumour-associated fibroblasts, have immunosuppressive function, and facilitate metastasis by epithelial-to- mesenchymal transition. Moreover, MSCs generate osteoblasts and osteocytes and regulate osteoclastogenesis. Therefore, MSCs can play an important pro-tumorigenic role in the formation of a microenvironment that promotes BM and bone metastasis. In this study we showed that BM MSCs from untreated advanced breast and lung cancer patients, without bone metastasis, had low osteogenic and adipogenic differentiation capacity compared to that of healthy volunteers. In contrast, chondrogenic differentiation was increased. Moreover, MSCs from patients had lower expression of CD146. Finally, our data showed higher levels of Dkk-1 in peripheral blood plasma from patients compared with healthy volunteers. Because no patient had any bone disorder by the time of the study we propose that the primary tumour altered the plasticity of MSCs. As over 70 % of advanced breast cancer patients and 30-40 % of lung cancer patients will develop osteolytic bone metastasis for which there is no total cure, our findings could possibly be used as predictive tools indicating the first signs of future bone disease. In addition, as the MSCs present in the BM of these patients may not be able to regenerate bone after the tumour cells invasion into BM/bone, it is possible that they promote the cycle between tumour cell growth and bone destruction. © 2012 Springer Science+Business Media Dordrecht.

Registro:

Documento: Artículo
Título:Behaviour of mesenchymal stem cells from bone marrow of untreated advanced breast and lung cancer patients without bone osteolytic metastasis
Autor:Fernández Vallone, V.B.; Hofer, E.L.; Choi, H.; Bordenave, R.H.; Batagelj, E.; Feldman, L.; La Russa, V.; Caramutti, D.; Dimase, F.; Labovsky, V.; Martínez, L.M.; Chasseing, N.A.
Filiación:Experimental Biology and Medicine Institute, CONICET, Ciudad Autónoma de Buenos Aires, 2490 Vuelta de Obligado, 1428 Buenos Aires, Argentina
Texas A and M Health Science Center, College of Medicine, Institute for Regenerative Medicine at Scott and White, 5701 Airport Road, Module C. Temple, TX 76502, United States
Department of Oncology, Iriarte Hospital, 770 Alison Bell, Quilmes, 1878 Buenos Aires, Argentina
Department of Oncology, Central Militar Hospital, Ciudad Autónoma de Buenos Aires, 726 Av. Luis María Campos, C1426BOR Buenos Aires, Argentina
Department of Bone Marrow Transplantation, Favaloro Fundation 443 Solis, Ciudad Autónoma de Buenos Aires, 1428 Buenos Aires, Argentina
Cytotherapy Laboratory, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States
Department of Hemotherapy, Central Militar Hospital, Ciudad Autónoma de Buenos Aires, 726 Av. Luis María Campos, C1426BOR Buenos Aires, Argentina
Palabras clave:Bone marrow; Cancer; Mesenchymal stem cell; Plasticity; CD146 antigen; dickkopf 1 protein; adipogenesis; adult; advanced cancer; aged; antigen expression; article; bone atrophy; bone development; bone metastasis; breast cancer; cancer patient; cell differentiation; chondrogenesis; controlled study; hematopoietic stem cell; human; human cell; human tissue; lung cancer; mesenchymal stem cell; protein blood level; bone marrow; bone tumor; breast tumor; enzyme linked immunosorbent assay; female; flow cytometry; lung tumor; mesenchymal stroma cell; metastasis; osteolysis; pathology; real time polymerase chain reaction; reverse transcription polymerase chain reaction; Bone Marrow; Bone Neoplasms; Breast Neoplasms; Enzyme-Linked Immunosorbent Assay; Female; Flow Cytometry; Humans; Lung Neoplasms; Mesenchymal Stromal Cells; Osteolysis; Real-Time Polymerase Chain Reaction; Reverse Transcriptase Polymerase Chain Reaction
Año:2013
Volumen:30
Número:3
Página de inicio:317
Página de fin:332
DOI: http://dx.doi.org/10.1007/s10585-012-9539-4
Título revista:Clinical and Experimental Metastasis
Título revista abreviado:Clin. Exp. Metastasis
ISSN:02620898
CODEN:CEXMD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02620898_v30_n3_p317_FernandezVallone

Referencias:

  • Del Fattore, A., Capannolo, M., Rucci, N., Bone and bone marrow: The same organ (2010) Arch Biochem Biophys, 503 (1), pp. 28-34. , 20655867 10.1016/j.abb.2010.07.020
  • Muguruma, Y., Reconstitution of the functional human hematopoietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment (2006) Blood, 107 (5), pp. 1878-1887. , 16282345 10.1182/blood-2005-06-2211 1:CAS:528:DC%2BD28XitFChsbY%3D
  • Pogoda, P., Bone remodeling: New aspects of a key process that controls skeletal maintenance and repair (2005) Osteoporos Int, 16 (SUPPL. 2), pp. 18-S24. , 15551056 10.1007/s00198-004-1787-y 1:CAS:528:DC%2BD2MXlsFehs7o%3D
  • Compston, J.E., Bone marrow and bone: A functional unit (2002) J Endocrinol, 173 (3), pp. 387-394. , 12065228 10.1677/joe.0.1730387 1:CAS:528:DC%2BD38Xlt1ehtLs%3D
  • Yin, T., Li, L., The stem cell niches in bone (2006) J Clin Invest, 116 (5), pp. 1195-1201. , 16670760 10.1172/JCI28568 1:CAS:528:DC%2BD28XksVWgu7o%3D
  • Doan, P.L., Chute, J.P., The vascular niche: Home for normal and malignant hematopoietic stem cells (2012) Leukemia, 26 (1), pp. 54-62
  • Wang, L.D., Wagers, A.J., Dynamic niches in the origination and differentiation of haematopoietic stem cells (2011) Nat Rev Mol Cell Biol, 12 (10), pp. 643-655. , 21886187 10.1038/nrm3184 1:CAS:528:DC%2BC3MXhtFWku7rK
  • Roodman, G.D., Mechanisms of bone metastasis (2004) N Engl J Med, 350 (16), pp. 1655-1664. , 15084698 10.1056/NEJMra030831 1:CAS:528:DC%2BD2cXjt1WksLY%3D
  • Ooi, L.L., The bone remodeling environment is a factor in breast cancer bone metastasis (2011) Bone, 48 (1), pp. 66-70. , 20472107 10.1016/j.bone.2010.05.007
  • Onishi, T., Future directions of bone-targeted therapy for metastatic breast cancer (2010) Nat Rev Clin Oncol, 7 (11), pp. 641-651. , 20808302 10.1038/nrclinonc.2010.134 1:CAS:528:DC%2BC3cXhtlCrsb7O
  • Luis-Ravelo, D., Tumor-stromal interactions of the bone microenvironment: In vitro findings and potential in vivo relevance in metastatic lung cancer models (2011) Clin Exp Metastasis
  • Guise, T.A., Molecular mechanisms of breast cancer metastases to bone (2005) Clin Breast Cancer, 5 (2 SUPPL.), pp. S46-S53
  • Chantrain, C.F., Bone marrow microenvironment and tumor progression (2008) Cancer Microenviron, 1 (1), pp. 23-35. , 19308682 10.1007/s12307-008-0010-7
  • Hsu, Y.L., Lung tumor-associated osteoblast-derived bone morphogenetic protein-2 increased epithelial-to-mesenchymal transition of cancer by Runx2/Snail signaling pathway (2011) J Biol Chem, 286 (43), pp. 37335-37346. , 21885439 10.1074/jbc.M111.256156 1:CAS:528:DC%2BC3MXhtlGnsL%2FJ
  • Coleman, R.E., Metastasis and bone loss: Advancing treatment and prevention (2010) Cancer Treat Rev, 36 (8), pp. 615-620. , 20478658 10.1016/j.ctrv.2010.04.003
  • Rosen, L.S., Zoledronic acid versus placebo in the treatment of skeletal metastases in patients with lung cancer and other solid tumors: A phase III, double-blind, randomized trial - The zoledronic acid lung cancer and other solid tumors study group (2003) J Clin Oncol, 21 (16), pp. 3150-3157. , 12915606 10.1200/JCO.2003.04.105 1:CAS:528:DC%2BD2cXpsVWqtb0%3D
  • Kvale, P.A., Simoff, M., Prakash, U.B., Lung cancer. Palliative care (2003) Chest, 123 (1 SUPPL.), pp. 284S-311S. , 12527586 10.1378/chest.123.1-suppl.284S
  • Papadakis, S.A., The development of bone metastases as the first sign of metastatic spread in patients with primary solid tumours (2004) Int Orthop, 28 (2), pp. 102-105. , 15224168 10.1007/s00264-003-0532-z 1:STN:280:DC%2BD2czitF2ntw%3D%3D
  • Mercer, R.R., Mastro, A.M., Cytokines secreted by bone-metastatic breast cancer cells alter the expression pattern of f-actin and reduce focal adhesion plaques in osteoblasts through PI3K (2005) Exp Cell Res, 310 (2), pp. 270-281. , 16154565 10.1016/j.yexcr.2005.07.029 1:CAS:528:DC%2BD2MXhtFeku7nL
  • Nannuru, K.C., Singh, R.K., Tumor-stromal interactions in bone metastasis (2010) Curr Osteoporos Rep, 8 (2), pp. 105-113. , 20425618 10.1007/s11914-010-0011-6
  • Fromigue, O., Breast cancer cells release factors that induced apoptosis in human bone marrow stromal cells (2001) J Bone Miner Res, 16 (9), pp. 1600-1610. , 11547830 10.1359/jbmr.2001.16.9.1600 1:CAS:528:DC%2BD3MXmvV2qsL8%3D
  • Atkins, G.J., RANKL expression is related to the differentiation state of human osteoblasts (2003) J Bone Miner Res, 18 (6), pp. 1088-1098. , 12817763 10.1359/jbmr.2003.18.6.1088 1:CAS:528:DC%2BD3sXkslOhsbY%3D
  • Voorzanger-Rousselot, N., Assessment of circulating Dickkopf-1 with a new two-site immunoassay in healthy subjects and women with breast cancer and bone metastases (2009) Calcif Tissue Int, 84 (5), pp. 348-354. , 19252761 10.1007/s00223-009-9225-y 1:CAS:528:DC%2BD1MXltV2htrc%3D
  • Sheng, S.L., Clinical significance and prognostic value of serum Dickkopf-1 concentrations in patients with lung cancer (2009) Clin Chem, 55 (9), pp. 1656-1664. , 19628661 10.1373/clinchem.2009.125641
  • Yamabuki, T., Dikkopf-1 as a novel serologic and prognostic biomarker for lung and esophageal carcinomas (2007) Cancer Res, 67 (6), pp. 2517-2525. , 17363569 10.1158/0008-5472.CAN-06-3369 1:CAS:528:DC%2BD2sXivV2gu7k%3D
  • Majumdar, M.K., Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages (2000) J Hematother Stem Cell Res, 9 (6), pp. 841-848. , 11177595 10.1089/152581600750062264 1:CAS:528:DC%2BD3MXhtFKgtbg%3D
  • Ramalho, A.C., Effect of oestradiol on cytokine production in immortalized human marrow stromal cell lines (2001) Cytokine, 16 (4), pp. 126-130. , 11792122 10.1006/cyto.2001.0956 1:CAS:528:DC%2BD38XjsFegug%3D%3D
  • Kim, D.H., Gene expression profile of cytokine and growth factor during differentiation of bone marrow-derived mesenchymal stem cell (2005) Cytokine, 31 (2), pp. 119-126. , 15919213 10.1016/j.cyto.2005.04.004 1:CAS:528:DC%2BD2MXlvVenu7o%3D
  • Fromigue, O., Modrowski, D., Marie, P.J., Growth factors and bone formation in osteoporosis: Roles for fibroblast growth factor and transforming growth factor beta (2004) Curr Pharm des, 10 (21), pp. 2593-2603. , 15320747 10.2174/1381612043383773 1:CAS:528:DC%2BD2cXlslaqu7Y%3D
  • Rose, A.A., Siegel, P.M., Breast cancer-derived factors facilitate osteolytic bone metastasis (2006) Bull Cancer, 93 (9), pp. 931-943. , 16980236 1:CAS:528:DC%2BD28Xht1yqtL7I
  • Bonyadi, M., Mesenchymal progenitor self-renewal deficiency leads to age-dependent osteoporosis in Sca-1/Ly-6A null mice (2003) Proc Natl Acad Sci USA, 100 (10), pp. 5840-5845. , 12732718 10.1073/pnas.1036475100 1:CAS:528:DC%2BD3sXjvFOlsLY%3D
  • Beresford, J.N., Osteogenic stem cells and the stromal system of bone and marrow (1989) Clin Orthop Relat Res, 240, pp. 270-280. , 2645077
  • Gregory, C.A., Dkk-1-derived synthetic peptides and lithium chloride for the control and recovery of adult stem cells from bone marrow (2005) J Biol Chem, 280 (3), pp. 2309-2323. , 15504735 10.1074/jbc.M406275200 1:CAS:528:DC%2BD2MXksVWmtA%3D%3D
  • Friedenstein, A.J., Osteogenetic activity of transplanted transitional epithelium (1961) Acta Anat (Basel), 45, pp. 31-59. , 10.1159/000141739 1:STN:280:DyaF38%2Fjs1Gmuw%3D%3D
  • Bruder, S.P., Jaiswal, N., Haynesworth, S.E., Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation (1997) J Cell Biochem, 64 (2), pp. 278-294. , 9027588 10.1002/(SICI)1097-4644(199702)64:2<278: AID-JCB11>3.0. CO;2-F 1:CAS:528:DyaK2sXpt1Kqsg%3D%3D
  • Baksh, D., Song, L., Tuan, R.S., Adult mesenchymal stem cells: Characterization, differentiation, and application in cell and gene therapy (2004) J Cell Mol Med, 83, pp. 301-316
  • Pittenger, M.F., Multilineage potential of adult human mesenchymal stem cells (1999) Science, 284 (5411), pp. 143-147. , 10102814 10.1126/science.284.5411.143 1:CAS:528:DyaK1MXitlCnu7o%3D
  • Muraglia, A., Cancedda, R., Quarto, R., Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model (2000) J Cell Sci, 113 (PART 7), pp. 1161-1166. , 10704367 1:CAS:528:DC%2BD3cXjtFylsro%3D
  • Tormin, A., CD146 expression on primary non-hematopoietic bone marrow stem cells correlates to in situ localization (2011) Blood, 117 (19), pp. 5067-5077
  • Russell, K.C., In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment (2010) Stem Cells, 28 (4), pp. 788-798. , 20127798 10.1002/stem.312 1:CAS:528:DC%2BC3cXms1yisbg%3D
  • Castro-Malaspina, H., Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny (1980) Blood, 56 (2), pp. 289-301. , 6994839 1:STN:280:DyaL3c3ktlajsQ%3D%3D
  • Labovsky, V., Cardiomyogenic differentiation of human bone marrow mesenchymal cells: Role of cardiac extract from neonatal rat cardiomyocytes (2010) Differentiation, 79 (2), pp. 93-101. , 19926393 10.1016/j.diff.2009.10.001 1:CAS:528:DC%2BC3cXjsFGitLc%3D
  • Hofer, E.L., Mesenchymal stromal cells, colony-forming unit fibroblasts, from bone marrow of untreated advanced breast and lung cancer patients suppress fibroblast colony formation from healthy marrow (2010) Stem Cells Dev, 19 (3), pp. 359-370. , 19388812 10.1089/scd.2008.0375 1:CAS:528:DC%2BC3cXjtlGgsrc%3D
  • Dominici, M., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement (2006) Cytotherapy, 8 (4), pp. 315-317. , 16923606 10.1080/14653240600855905 1:STN:280:DC%2BD28vpvFSjsA%3D%3D
  • Tripodo, C., CD146(+) bone marrow osteoprogenitors increase in the advanced stages of primary myelofibrosis (2009) Haematologica, 94 (1), pp. 127-130. , 19029148 10.3324/haematol.13598
  • Yoneda, T., Hiraga, T., Crosstalk between cancer cells and bone microenvironment in bone metastasis (2005) Biochem Biophys Res Commun, 328 (3), pp. 679-687. , 15694401 10.1016/j.bbrc.2004.11.070 1:CAS:528:DC%2BD2MXhtVKhsbY%3D
  • Fierro, F.A., Marrow-derived mesenchymal stem cells: Role in epithelial tumor cell determination (2004) Clin Exp Metastasis, 21 (4), pp. 313-319. , 15554387 10.1023/B:CLIN.0000046130.79363.33 1:CAS:528: DC%2BD2cXovFOgsbk%3D
  • Hombauer, H., Minguell, J.J., Selective interactions between epithelial tumour cells and bone marrow mesenchymal stem cells (2000) Br J Cancer, 82 (7), pp. 1290-1296. , 10755403 10.1054/bjoc.1999.1093 1:STN:280:DC%2BD3c3hs1Wkuw%3D%3D
  • Karnoub, A.E., Mesenchymal stem cells within tumour stroma promote breast cancer metastasis (2007) Nature, 449 (7162), pp. 557-563. , 17914389 10.1038/nature06188 1:CAS:528:DC%2BD2sXhtFagt7fI
  • Sasser, A.K., Human bone marrow stromal cells enhance breast cancer cell growth rates in a cell line-dependent manner when evaluated in 3D tumor environments (2007) Cancer Lett, 254 (2), pp. 255-264. , 17467167 10.1016/j.canlet.2007.03.012 1:CAS:528:DC%2BD2sXosFKjs7c%3D
  • Molloy, A.P., Mesenchymal stem cell secretion of chemokines during differentiation into osteoblasts, and their potential role in mediating interactions with breast cancer cells (2009) Int J Cancer, 124 (2), pp. 326-332. , 19003962 10.1002/ijc.23939 1:CAS:528:DC%2BD1MXhvFaqtw%3D%3D
  • Catena, R., PDGFR signaling blockade in marrow stroma impairs lung cancer bone metastasis (2011) Cancer Res, 71 (1), pp. 164-174. , 21097719 10.1158/0008-5472.CAN-10-1708 1:CAS:528:DC%2BC3MXovFKm
  • Muraglia, A., Formation of a chondro-osseous rudiment in micromass cultures of human bone-marrow stromal cells (2003) J Cell Sci, 116 (PART 14), pp. 2949-2955. , 12783985 10.1242/jcs.00527 1:CAS:528:DC%2BD3sXlvFyqtb8%3D
  • Mls, P., Zipori, D., The origins of mesenchymal stromal cell heterogeneity (2011) Stem Cell Rev, 7 (3), pp. 560-568
  • Jaiswal, R.K., Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase (2000) J Biol Chem, 275 (13), pp. 9645-9652. , 10734116 10.1074/jbc.275.13.9645 1:CAS:528:DC%2BD3cXitlCqs70%3D
  • Sacchetti, B., Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment (2007) Cell, 131 (2), pp. 324-336. , 17956733 10.1016/j.cell.2007.08.025 1:CAS:528:DC%2BD2sXht1KqsbbK
  • Pinzone, J.J., The role of Dickkopf-1 in bone development, homeostasis, and disease (2009) Blood, 113 (3), pp. 517-525. , 18687985 10.1182/blood-2008-03-145169 1:CAS:528:DC%2BD1MXht1Wns70%3D
  • Tian, E., The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma (2003) N Engl J Med, 349 (26), pp. 2483-2494. , 14695408 10.1056/NEJMoa030847 1:CAS:528:DC%2BD3sXhtVWit7zO
  • Menezes, M.E., Dickkopf1: A tumor suppressor or metastasis promoter? (2011) Int J Cancer, 130, pp. 1477-1483
  • Scutt, A., Bertram, P., Basic fibroblast growth factor in the presence of dexamethasone stimulates colony formation, expansion, and osteoblastic differentiation by rat bone marrow stromal cells (1999) Calcif Tissue Int, 64 (1), pp. 69-77. , 9868287 10.1007/s002239900581 1:CAS:528:DyaK1MXktVyruw%3D%3D
  • Huang, Z., Modulating osteogenesis of mesenchymal stem cells by modifying growth factor availability (2010) Cytokine, 51 (3), pp. 305-310. , 20580248 10.1016/j.cyto.2010.06.002 1:CAS:528:DC%2BC3cXpsFOgu7Y%3D
  • Hildner, F., FGF-2 abolishes the chondrogenic effect of combined BMP-6 and TGF-beta in human adipose derived stem cells (2010) J Biomed Mater Res A, 94 (3), pp. 978-987. , 20730935
  • Weiss, S., Impact of growth factors and PTHrP on early and late chondrogenic differentiation of human mesenchymal stem cells (2010) J Cell Physiol, 223 (1), pp. 84-93. , 20049852 1:CAS:528:DC%2BC3cXhtlSit7s%3D
  • Hofer, E.L., Alteration on the expression of IL-1, PDGF, TGF-beta, EGF, and FGF receptors and c-Fos and c-Myc proteins in bone marrow mesenchymal stroma cells from advanced untreated lung and breast cancer patients (2005) Stem Cells Dev, 14 (5), pp. 587-594. , 16305343 10.1089/scd.2005.14.587 1:CAS:528:DC%2BD2MXht1GisLnE
  • Hofer, E.L., Bordenave, R.H., Bullorsky, E.O., Belloc, D.G., Chasseing, N.A., Immunohistochemical characterization of bone marrow fibroblast from untreated advanced lung and breast cancer patients compared to normal controls (2002) Blood, 100, pp. 187b
  • Baek, K.H., Association of oxidative stress with postmenopausal osteoporosis and the effects of hydrogen peroxide on osteoclast formation in human bone marrow cell cultures (2010) Calcif Tissue Int, 87 (3), pp. 226-235. , 20614110 10.1007/s00223-010-9393-9 1:CAS:528:DC%2BC3cXhtVCnurvM
  • De Cavanagh, E.M., Higher oxidation and lower antioxidant levels in peripheral blood plasma and bone marrow plasma from advanced cancer patients (2002) Cancer, 94 (12), pp. 3247-3251. , 12115357 10.1002/cncr.10611
  • Felka, T., Hypoxia reduces the inhibitory effect of IL-1beta on chondrogenic differentiation of FCS-free expanded MSC (2009) Osteoarthritis Cartilage, 17 (10), pp. 1368-1376. , 19463979 10.1016/j.joca.2009.04.023 1:STN:280:DC%2BD1MnkvVSntA%3D%3D
  • Vu, T.H., Werb, Z., Matrix metalloproteinases: Effectors of development and normal physiology (2000) Genes Dev, 14 (17), pp. 2123-2133. , 10970876 10.1101/gad.815400 1:CAS:528:DC%2BD3cXmtlegu7o%3D
  • Hofer, E., Chudzinski-Tavassi, A.M., Bullorsky, O.E., Bordenave, R.H., Chasseing, N.A., MMPs and tissue inhibitors in conditioned mediums from bone marrow CFU-F of advanced lung and breast cancer patients (2002) Hematol J, 81 (2), pp. 80-85
  • Kasper, G., Matrix metalloprotease activity is an essential link between mechanical stimulus and mesenchymal stem cell behavior (2007) Stem Cells, 25 (8), pp. 1985-1994. , 17495113 10.1634/stemcells.2006-0676 1:CAS:528:DC%2BD2sXhtVSqsbbE

Citas:

---------- APA ----------
Fernández Vallone, V.B., Hofer, E.L., Choi, H., Bordenave, R.H., Batagelj, E., Feldman, L., La Russa, V.,..., Chasseing, N.A. (2013) . Behaviour of mesenchymal stem cells from bone marrow of untreated advanced breast and lung cancer patients without bone osteolytic metastasis. Clinical and Experimental Metastasis, 30(3), 317-332.
http://dx.doi.org/10.1007/s10585-012-9539-4
---------- CHICAGO ----------
Fernández Vallone, V.B., Hofer, E.L., Choi, H., Bordenave, R.H., Batagelj, E., Feldman, L., et al. "Behaviour of mesenchymal stem cells from bone marrow of untreated advanced breast and lung cancer patients without bone osteolytic metastasis" . Clinical and Experimental Metastasis 30, no. 3 (2013) : 317-332.
http://dx.doi.org/10.1007/s10585-012-9539-4
---------- MLA ----------
Fernández Vallone, V.B., Hofer, E.L., Choi, H., Bordenave, R.H., Batagelj, E., Feldman, L., et al. "Behaviour of mesenchymal stem cells from bone marrow of untreated advanced breast and lung cancer patients without bone osteolytic metastasis" . Clinical and Experimental Metastasis, vol. 30, no. 3, 2013, pp. 317-332.
http://dx.doi.org/10.1007/s10585-012-9539-4
---------- VANCOUVER ----------
Fernández Vallone, V.B., Hofer, E.L., Choi, H., Bordenave, R.H., Batagelj, E., Feldman, L., et al. Behaviour of mesenchymal stem cells from bone marrow of untreated advanced breast and lung cancer patients without bone osteolytic metastasis. Clin. Exp. Metastasis. 2013;30(3):317-332.
http://dx.doi.org/10.1007/s10585-012-9539-4