Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A cell wall-enriched butternut (Cucurbita moschata Duch ex Poiret) powder was obtained by drying mesocarp wastes; this powder was used as the substrate for commercial cellulase (A-product) or hemicellulase (B-product) action. Yields were 4.70% and 6.12%, respectively. Both pectin-enriched products were water soluble fibers and only the latter showed important thickening effect at 20 g dm-3-concentration in water. This product was a highly methylated (methylation degree, DM, 72.6) pectin with 45.2 g/100 g of galacturonic acid and 11 g/100 g of neutral sugars. Cellulase produced intense hydrolysis leading to a less methylated (DM: 54.2) A-fraction. It was observed that not only average molecular weight, but also the molecular structure derived from chemical composition affected flow behavior and viscosity enhancing capacity. As A-fraction was enriched in rhamnogalacturonan I, probably, rhamnose kinks were responsible for the poor thickening effect at 20 g dm-3-concentration in water, in spite of its homogeneous molecular weight profile, which showed only one peak at 793,000. This fraction presented the lowest density of macromolecular interactions in water, behaving as a diluted hydrocolloid solution as confirmed by its fitting to the Cox-Merz rule. Both isolated soluble fractions produced a delay in the glucose dialysis assay. © 2009 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Commercial cell wall hydrolytic enzymes for producing pectin-enriched products from butternut (Cucurbita moschata, Duchesne ex Poiret)
Autor:Fissore, E.N.; Ponce, N.M.; Wider, E.A.; Stortz, C.A.; Gerschenson, L.N.; Rojas, A.M.
Filiación:Industry Department, School of Natural and Exact Sciences (FCEN), Buenos Aires University (UBA)Ciudad Universitaria, Intendente Güiraldes 2620, 1428 Ciudad Autonoma de Buenos Aires, Argentina
Organic Chemistry Department-CIHIDECAR, School of Natural and Exact Sciences (FCEN), Buenos Aires University (UBA)Ciudad Universitaria, Intendente Güiraldes 2620, 1428 Ciudad Autonoma de Buenos Aires, Argentina
Biological Chemistry Department, School of Natural and Exact Sciences (FCEN), Buenos Aires University (UBA)Ciudad Universitaria, Intendente Güiraldes 2620, 1428 Ciudad Autonoma de Buenos Aires, Argentina
Palabras clave:Butternut; Composition; Enzymes; Pectin; Properties; Catalysts; Dialysis; Enzymes; Glucose; Molecular weight; Powders; Sugar (sucrose); Average molecular weights; Butternut; Cell walls; Chemical compositions; Composition; Cox-merz rules; Cucurbita moschata; Enhancing capacities; Flow behaviors; Galacturonic acids; Hemicellulase; Hydrolytic enzymes; Neutral sugars; Pectin; Properties; Rhamnogalacturonan-I; Soluble fractions; Water-soluble fibers; Polysaccharides; Cucurbita moschata; Juglans cinerea
Año:2009
Volumen:93
Número:3
Página de inicio:293
Página de fin:301
DOI: http://dx.doi.org/10.1016/j.jfoodeng.2009.01.024
Título revista:Journal of Food Engineering
Título revista abreviado:J Food Eng
ISSN:02608774
CODEN:JFOED
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02608774_v93_n3_p293_Fissore

Referencias:

  • (1995) Approved Methods of the AACC, pp. 1-5. , AACC, American Association of Cereal Chemists, ninth ed. Method 76-12. The Association, St Paul, MN, pp
  • Albersheim, P., Nevins, D.J., English, P.D., Karr, A., A method for the analysis of sugars in plant cell-wall polysaccharides by gas-liquid chromatography (1967) Carbohydrate Research, 5, pp. 340-345
  • Brett, C.T., Waldron, K.W., (1996) The Physiology and Biochemistry of Plant Cell Walls. second ed., , Chapman and Hall, London pp. 26-32
  • Caili, F., Huan, S., Quanhong, L., A review on pharmacological activities and utilization technologies of pumpkin (2006) Plant Foods for Human Nutrition, 61 (2), pp. 73-80
  • Chau, C.F., Chen, C.H., Lin, C.Y., Insoluble fiber-rich fractions derived from Averrhoa carambola: hypoglycaemic effects determined by in vitro methods (2004) Lebensmittel Wissenschaft und Technologie, 37, pp. 331-335
  • de Escalada Pla, M.F., Ponce, N.M., Wider, M.E., Stortz, C.A., Rojas, A.M., Gerschenson, L.N., Chemical and biochemical changes of pumpkin (Cucumis moschata, Duch) tissue in relation to osmotic stress (2005) Journal of the Science of Food and Agriculture, 85 (11), pp. 1852-1860
  • Dubois, M., Gilles, K.A., Hamilton, J.K., Robers, P.A., Smith, F., Colorimetric method for determination of sugars and related substances (1956) Analytical Chemistry, 28, pp. 350-356
  • Ferry, J.D., (1980) Viscoelastic Properties of Polymers. second ed., , John Wiley & Sons, New York, USA
  • Filisetti-Cozzi, T.M.C.C., Carpita, N.C., Measurement of uronic acids without interference from neutral sugars (1991) Analytical Biochemistry, 197, pp. 157-162
  • Fissore, E.N., Ponce, N.M., Stortz, C.A., Rojas, A.M., Gerschenson, L.N., Characterization of fiber obtained from pumpkin (Cucumis moschata Duch) mesocarp through enzymatic treatment (2007) Food Science and Technology International, 16 (1), pp. 1-7
  • Fry, S.C., Cross-linking of matrix polymers in the growing cell walls of angiosperms (1986) Annual Review of Plant Physiology, 37, pp. 165-186
  • Furuta, H., Maeda, H., Rheological properties of water-soluble soybean polysaccharides extracted under weak acidic condition (1999) Food Hydrocolloids, 13, pp. 267-274
  • Ghose, T.K., Measurement of cellulase activities (1987) Pure and Applied Chemistry, 59 (2), pp. 257-268
  • Ghose, T.K., Bisaria, V.S., Measurement of hemicellulase activities. Part 1: xylanases (1987) Pure and Applied Chemistry, 59 (12), pp. 1739-1752
  • Grassi, M., Lapasin, R., Pricl, S., A study of the rheological behavior of scleroglucan weak gel systems (1996) Carbohydrate Polymers, 29, pp. 169-181
  • Guillon, F., Champ, M., Structural and physical properties of dietary fibers, and consequences of processing on human physiology (2000) Food Research International, 33, pp. 233-245
  • Guillotin, S.E., Bakx, E.J., Boulenguer, P., Mazoyer, J., Schols, H.A., Voragen, A.G.J., Populations having different GalA blocks characteristics are present in commercial pectins which are chemically similar but have different functionalities (2005) Carbohydrate Polymers, 60, pp. 391-398
  • Iwai, H., Ishii, T., Satoh, S., Absence of arabinan in the side chains of the pectic polysaccharides strongly associated with cell walls of Nicotiana plumbaginifolia non-organogenic callus with loosely attached constituent cells (2001) Planta, 213 (6), pp. 907-915
  • Jampen, S., Britt, I.J., Tung, M.A., Gellan polymer solution properties - dilute and concentrated regimes (2000) Food Research International, 33 (7), pp. 579-586
  • Karkhanis, Y.D., Zeltner, J., Jackson, J.J., Carlo, D.J., A new and improved microassay to determine 2-keto-3-deoxyoctonate in lipopolysaccharide of Gram-negative bacteria (1978) Analytical Biochemistry, 85, pp. 595-601
  • Lapasin, R., Pricl, S., (1995) Rheology of Industrial Polysaccharides. Theory and Applications, , Chapman & Hall, Blackie Academic and Professional, London
  • Lee, S., Warner, K., Inglett, G.E., Rheological properties and baking performance of new oat β-glucan-rich hydrocolloids (2005) Journal of Agricultural and Food Chemistry, 53, pp. 9805-9809
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., Protein measurement with the Folin phenol reagent (1951) Journal of Biological Chemistry, 193, pp. 265-275
  • May, C.D., Industrial pectins: sources, production and applications (1990) Carbohydrate Polymers, 12 (1), pp. 79-99
  • Morris, E.R., Cutler, A.N., Ross-Murphy, S.B., Rees, D.A., Price, J., Concentration and shear rate dependence of viscosity in random coil polysaccharide solutions (1981) Carbohydrate Polymers, 1, pp. 5-21
  • Mort, A.J., Moerschbacher, B.M., Pierce, M.L., Maness, N.O., Problems encountered during the extraction, purification, and chromatography of pectic fragments, and some solutions to them (1991) Carbohydrate Research, 215, pp. 219-227
  • Naumenko, I.V., Phillipov, M.P., Colorimetric method for determination of acetyl groups in pectic substances (1992) Izvestiya Akademii Nauk Moldavskoi SSR -Seriya Biologicheskikh i Khimicheskikh Nauki, 1, pp. 56-59. , (in Russian)
  • Nawirska, A., Kwaśniewska, M., Dietary fiber fractions from fruit and vegetable processing waste (2005) Food Chemistry, 91, pp. 221-225
  • Nielsen, B.U., Fiber-based fat mimetics: pectin (1996) Handbook of Fat Replacers, , Roller S., and Jones S.A. (Eds), CRC Press, Taylor & Francis ISBN: 978084932512
  • Panouillé, M., Thibault, J.F., Bonnin, E., Cellulase and protease preparations can extract pectins from various plant by-products (2006) Journal of Agriculture and Food Chemistry, 54, pp. 8926-8935
  • Pellerin, P., ÓNeill, M.A., The interaction of the pectic polysaccharide rhamnogalacturonan II with heavy metals and lanthanides in wines and fruit juices (1998) Analusis Magazine, 26 (6), pp. 32-36
  • Quintana, J.M., (2003) Microestructura, estabilidad y propiedades reológicas de emulsiones alimentarias estabilizadas con hidrocoloides, , PhD-Thesis, Universidad Nacional de La Plata, Facultad de Ciencias Exactas, Departamento de Química in Spanish
  • Ross-Murphy, S.B., Rheological methods (1994) Physical Techniques for the Study of Food Biopolymers, pp. 343-393. , Ross-Murphy S.B. (Ed), Chapman & Hall, Blackie Academic & Professional, London, United Kingdom
  • Schröder, R., Sébastien, P.N., Vincent, J.V., Fischer, M., Reymond, S., Redgwell, R.J., Purification and characterisation of a galactoglucomannan from kiwifruit (Actinidia deliciosa) (2001) Carbohydrate Research, 331, pp. 291-306
  • Shkodina, O.G., Zeltser, O.A., Selivanov, N.Y., Ignatov, V.V., Enzymic extraction of pectin preparations from pumpkin (1998) Food Hydrocolloids, 12, pp. 313-316
  • Siew, K., Williams, P.A., Role of protein and ferulic acid in the emulsification properties of sugar beet pectin (2008) Journal of Agricultural and Food Chemistry, 56 (11), pp. 4164-4171
  • Sokal, R.R., Rohlf, J.B., (2000) Biometry. The Principles and Practice of Statistics in Biological Research, , WH Freeman and Company, San Francisco pp. 253-380
  • Spagnuolo, M., Crecchio, C., Pizzigallo, M.D.R., (1999) Biotechnology and Bioengineering, 64 (6), pp. 685-691
  • Stevenson, T.T., Darvill, A.G., Albersheim, P., 3-Deoxy-d-lyxo-2-heptulosaric acid, a component of the plant cell-wall polysaccharide rhamnogalacturonan II (1988) Carbohydrate Research, 179, pp. 269-288
  • Vincken, J.P., Schols, H.A., Oomen, R.J.F.J., Beldman, G., Visser, R.G.F., Voragen, A.G.J., Pectin - the hairy thing (2003) Advances in Pectin and Pectinase Research, pp. 47-59. , Voragen A.G.J., Schols H., and Visser R. (Eds), Kluwer Academic Publishers, Boston, Dordrecht
  • Vincken, J.P., Scholsm, H.A., Oomen, R.J.F.J., McCann, M.C., Ulvskov, P., Voragen, A.G.J., Visser, R.G.F., If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture (2003) Plant Physiology, 132, pp. 1781-1789
  • Waldron, K.W., Parker, M.L., Smith, A.C., Plant cell walls and food quality (2003) Critical Reviews in Food Science and Food Safety, 2, pp. 101-119
  • Wessels, M.R., Paoletti, L.C., Guttormsen, H.K., Michon, F., D'Ambra, A.J., Kaspe, D.L., Structural properties of group B streptococcal type III polysaccharide conjugate vaccines that influence immunogenicity and efficacy (1998) Infection and Immunity, 66 (5), pp. 2186-2192
  • Willats, W.G.T., Knox, J.P., Mikkelsen, D., Pectin: new insights into an old polymer are starting to gel (2006) Trends in Food Science and Technology, 17, pp. 97-104
  • Wood, P.J., Siddiqui, I.R., Determination of methanol and its application for measurement of pectin ester content and pectin methyl esterase activity (1971) Analytical Biochemistry, 39, pp. 418-428
  • York, W.S., Darvill, A.G., McNeil, M., Albersheim, P., 3-Deoxy-d-manno-2-octulosonic acid (KDO) is a component of rhamnogalacturonan II, a pectic polysaccharide in the primary cell walls of plants (1985) Carbohydrate Research, 138, pp. 109-126

Citas:

---------- APA ----------
Fissore, E.N., Ponce, N.M., Wider, E.A., Stortz, C.A., Gerschenson, L.N. & Rojas, A.M. (2009) . Commercial cell wall hydrolytic enzymes for producing pectin-enriched products from butternut (Cucurbita moschata, Duchesne ex Poiret). Journal of Food Engineering, 93(3), 293-301.
http://dx.doi.org/10.1016/j.jfoodeng.2009.01.024
---------- CHICAGO ----------
Fissore, E.N., Ponce, N.M., Wider, E.A., Stortz, C.A., Gerschenson, L.N., Rojas, A.M. "Commercial cell wall hydrolytic enzymes for producing pectin-enriched products from butternut (Cucurbita moschata, Duchesne ex Poiret)" . Journal of Food Engineering 93, no. 3 (2009) : 293-301.
http://dx.doi.org/10.1016/j.jfoodeng.2009.01.024
---------- MLA ----------
Fissore, E.N., Ponce, N.M., Wider, E.A., Stortz, C.A., Gerschenson, L.N., Rojas, A.M. "Commercial cell wall hydrolytic enzymes for producing pectin-enriched products from butternut (Cucurbita moschata, Duchesne ex Poiret)" . Journal of Food Engineering, vol. 93, no. 3, 2009, pp. 293-301.
http://dx.doi.org/10.1016/j.jfoodeng.2009.01.024
---------- VANCOUVER ----------
Fissore, E.N., Ponce, N.M., Wider, E.A., Stortz, C.A., Gerschenson, L.N., Rojas, A.M. Commercial cell wall hydrolytic enzymes for producing pectin-enriched products from butternut (Cucurbita moschata, Duchesne ex Poiret). J Food Eng. 2009;93(3):293-301.
http://dx.doi.org/10.1016/j.jfoodeng.2009.01.024