Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Viscoelastic properties of apple tissue during osmotic dehydration in a 25.0% w/w glucose aqueous solution at 20 °C were analyzed in a dynamic rheometer using oscillatory shear and creep-recovery tests. Both storage (G′) and loss (G″) moduli for fresh and osmotically dehydrated tissues showed a weaker dependence with angular frequency. All samples had a viscoelastic solid behavior with G′ dominating the viscoelastic response, but in general both moduli decreased with time of osmosis. For the time scale of the experiments, a generalized Kelvin model with six elements properly predicted the creep compliance response, with a correlation coefficient >0.999 for all samples. In general, initial (J0) and decay compliances (J1 and J2) and steady-state fluidity (ηN) significantly increased as treatment proceeded. Between 40 and 90 or 120 min osmosis, many rheological parameters (G′ at frequencies in the range 1-100 s-1; loss tangent at 0.1 s-1, J1, retardation times (λ1 and λ2), relative contribution of each type of compliance, ηN, plasticity, and overall compliance) showed a turning point, fluctuations or the greatest changes in the evolution along treatment. This behavior was related with shrinkage and posterior round shape recuperation and swelling of the cells, as seen in previous light and environmental scanning electron microscopy studies. © 2007 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Viscoelastic characteristics of Granny Smith apple during glucose osmotic dehydration
Autor:Martínez, V.Y.; Nieto, A.B.; Castro, M.A.; Salvatori, D.; Alzamora, S.M.
Filiación:Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Ciudad Autonoma de Buenos Aires, Argentina
Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Ciudad Autonoma de Buenos Aires, Argentina
Palabras clave:Apple; Glucose; Osmotic dehydration; Viscoelastic properties; Correlation coefficient; Creep compliance response; Creep-recovery test; Decay compliances; Glucose osmotic dehydration; Kelvin model; Oscillatory shear; Osmotic dehydration; Viscoelastic solid behavior; Dehydration; Osmosis; Rheometers; Scanning electron microscopy; Viscoelasticity; Fruits; Malus x domestica
Año:2007
Volumen:83
Número:3
Página de inicio:394
Página de fin:403
DOI: http://dx.doi.org/10.1016/j.jfoodeng.2007.03.025
Título revista:Journal of Food Engineering
Título revista abreviado:J Food Eng
ISSN:02608774
CODEN:JFOED
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02608774_v83_n3_p394_Martinez

Referencias:

  • Alvarez, C.A., Aguerre, R., Gómez, R., Vidales, S., Alzamora, S.M., Gerschenson, L.N., Air dehydration of strawberries: Effects of blanching and osmotic pretreatments on the kinetics of moisture transport (1995) Journal of Food Engineering, 25, pp. 167-178
  • Alzamora, S.M., Castro, M.A., Nieto, A.B., Vidales, S.L., Salvatori, D.M., The role of tissue microstructure in the textural characteristics of minimally processed fruits (2000) Minimally processed fruits and vegetables, pp. 153-171. , Alzamora SM., Tapia MS., and López-Malo A. (Eds), Aspen Publishers Inc., Maryland
  • Alzamora, S.M., Cerrutti, P., Guerrero, S., López-Malo, A., Minimally processes fruits by combined methods (1995) Food preservation by moisture control: fundamentals and applications, pp. 463-492. , Barbosa-Cánovas GV., and Welti-Chanes J. (Eds), Technomics Publishing, Lancaster, PA
  • Barat, J.M., Chiralt, A., Fito, P., Equilibrium in cellular food osmotic solution systems as related to structure (1998) Journal of Food Science, 63, pp. 836-840
  • Bourne, M.C., Texture of fruits and vegetables (1976) Rheology and texture in food quality, pp. 275-307. , DeMan JM., Voisey PW., Rasper VF., and Stanley DW. (Eds), Van Nostrand Reinhold/AVI, New York
  • Bray, E.A., Bailey-Serres, J., Weretilnyk, E., Responses to abiotic stresses (2000) Biochemistry and molecular biology of plants, pp. 1158-1202. , Buchanam BB., Gruissem W., and Jones RL. (Eds), American Society of Plant Physiologists, Maryland
  • Edwards, E., Vegetables and fruit (1999) Food texture: measurement and perception, pp. 259-281. , Rosenthal AJ. (Ed), An Aspen Publication, Maryland
  • Ferry, J.D., (1980) Viscoelastic properties of polymers. 3rd ed., , Wiley, New York
  • Jackman, R.L., Marangoni, A.G., Stanley, D.W., The effects of turgor pressure on puncture and viscoelastic properties of tomato tissue (1992) Journal of Texture Studies, 23, pp. 491-505
  • Jackman, R.L., Stanley, D.W., Creep behaviour of tomato pericarp tissue as influenced by ambient temperature ripening and chilled storage (1995) Journal of Texture Studies, 26, pp. 537-552
  • Jack, F.R., Paterson, A., Piggott, J.R., Perceived texture: Direct and indirect methods for use in product development (1995) International Journal of Food Science and Technology, 30, pp. 1-12
  • John, M.A., Dey, P.M., Postharvest changes in fruit cell walls (1986) Advances in Food Research, 30, pp. 139-193
  • Keurentjes, J.T.F., Janssen, A.E.M., Broek, A.P., Van der Padt, A., Wesselingh, J.A., Van T'Riet, K., Multicomponent diffusion in dialysis membranes (1992) Chemical Engineering Science, 47, pp. 1963-1971
  • Lin, T.T., Pitt, R.E., Rheology of apple and potato tissue as affected by cell turgor pressure (1986) Journal of Texture Studies, 17, pp. 291-313
  • Martínez, V.Y., Nieto, A.B., Viollaz, P.E., Alzamora, S.M., Viscoelatic behaviour of melon tissue as influenced by blanching and osmotic dehydration (2005) Journal of Food Science, 70 (1), pp. 12-18
  • Mavroudis, N.E., Dejmek, P., Sjöhlom, I., Osmotic-treatment-induced cell death and osmotic processing kinetics of apples with characterized raw material properties (2004) Journal of Food Engineering, 63, pp. 47-56
  • Mittal, J.P., Mohsenin, N.N., Rheological characterization of apple cortex (1987) Journal of Texture Studies, 18, pp. 65-93
  • Nieto, A., Salvatori, D., Castro, M.A., Alzamora, S.M., Air drying behaviour of apples as affected by blanching and glucose impregnation (1998) Journal of Food Engineering, 36, pp. 63-79
  • Nieto, A., Salvatori, D., Castro, M.A., Alzamora, S.M., Structural changes in apple tissue during glucose and sucrose osmotic dehydration: Shrinkage, porosity, density and microscopic features (2004) Journal of Food Engineering, 61, pp. 269-278
  • Oparka, K.J., Uptake and compartmentation of fluorescent probes by plant cells (1991) Journal of Experimental Botany, 42, pp. 565-579
  • Pitt, R.E., Viscoelastic properties of fruit and vegetables (1992) Viscoelastic properties of foods, pp. 3-47. , Rao M.A., and Steffe J.F. (Eds), Elsevier Science, Amsterdam
  • Pitt, R.E., Chen, H.L., Time-dependent aspects of the strength and rheology of vegetative tissue (1983) Transactions of the American Society of Agricultural Engineers, 26, pp. 1275-1280
  • Roa, V., Tapia de Daza, M.S., Evaluation of water activity measurements with a dew point electronic humidity meter (1991) Lebensmittel Wissenchaft und Technologie, 24, pp. 208-213
  • Rojas, A.M., Gerschenson, L.N., Marangoni, A.G., Contributions of cellular components to the rheological behaviour of kiwifruit (2001) Food Research International, 34, pp. 189-195
  • Salvatori, D.M., Alzamora, S.M., Structural changes and mass transfer during glucose infusión of apples as affected by blanching and process variables (2000) Drying Technology, 18, pp. 21-48
  • Sherman, P., (1970) Industrial rheology, , Academic Press, New York
  • Waldron, K.W., Smith, A.C., Parr, A.J., Ng, A., New approaches to understanding and controlling cell separation in relation to fruit and vegetable texture (1997) Trends in Food Science and Technology, 8, pp. 213-221

Citas:

---------- APA ----------
Martínez, V.Y., Nieto, A.B., Castro, M.A., Salvatori, D. & Alzamora, S.M. (2007) . Viscoelastic characteristics of Granny Smith apple during glucose osmotic dehydration. Journal of Food Engineering, 83(3), 394-403.
http://dx.doi.org/10.1016/j.jfoodeng.2007.03.025
---------- CHICAGO ----------
Martínez, V.Y., Nieto, A.B., Castro, M.A., Salvatori, D., Alzamora, S.M. "Viscoelastic characteristics of Granny Smith apple during glucose osmotic dehydration" . Journal of Food Engineering 83, no. 3 (2007) : 394-403.
http://dx.doi.org/10.1016/j.jfoodeng.2007.03.025
---------- MLA ----------
Martínez, V.Y., Nieto, A.B., Castro, M.A., Salvatori, D., Alzamora, S.M. "Viscoelastic characteristics of Granny Smith apple during glucose osmotic dehydration" . Journal of Food Engineering, vol. 83, no. 3, 2007, pp. 394-403.
http://dx.doi.org/10.1016/j.jfoodeng.2007.03.025
---------- VANCOUVER ----------
Martínez, V.Y., Nieto, A.B., Castro, M.A., Salvatori, D., Alzamora, S.M. Viscoelastic characteristics of Granny Smith apple during glucose osmotic dehydration. J Food Eng. 2007;83(3):394-403.
http://dx.doi.org/10.1016/j.jfoodeng.2007.03.025