Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The kinetics of non-enzymatic browning (NEB) was studied in freeze-dried model and food systems in a wide range of relative humidity (R.H.) values. PVP, lactose, lactose-starch solutions and food (milk, cabbage, apple, potato, and chicken meat) systems were freeze-dried, equilibrated at 11-85% of R.H. and incubated at 70 °C. Thermal transitions were determined by DSC. The kinetics of NEB development was analyzed. In PVP systems the maximum rate occurred at 33% R.H., at which Tg was close to the storage temperature. Above 33% R.H. the samples presented a fluid aspect at 70 °C and the NEB rate decreased when increasing R.H. In tissues containing structuring water insoluble biopolymers and presenting an intermediate degree of collapse, the maximum rate of NEB occurred at relative humidities in a range of 50-80%, when the samples were well above Tg at the storage temperature. In the lactose systems the maximum rate occurred at R.H. close to 40%, at conditions at which lactose was highly crystalline. © 2005 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Water-solids interactions, matrix structural properties and the rate of non-enzymatic browning
Autor:Acevedo, N.; Schebor, C.; Buera, M.P.
Filiación:Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Ciudad de Buenos Aires, Argentina
Palabras clave:Glass transition; Kinetics; Non-enzymatic browning; Relative humidity; Atmospheric humidity; Biopolymers; Food products; Freezing; Glass transition; Water; Kinetics; Lactose; Non-enzymatic browning; Thermal transitions; Enzyme kinetics; Brassica oleracea var. capitata; Malus x domestica; Solanum tuberosum
Año:2006
Volumen:77
Número:4
Página de inicio:1108
Página de fin:1115
DOI: http://dx.doi.org/10.1016/j.jfoodeng.2005.08.045
Título revista:Journal of Food Engineering
Título revista abreviado:J Food Eng
ISSN:02608774
CODEN:JFOED
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02608774_v77_n4_p1108_Acevedo

Referencias:

  • Bell, L., Kinetics of non-enzymatic browning in amorphous solid systems: Distinguishing the effects of water activity and the glass transition (1996) Food Research International, 28 (6), pp. 591-597
  • Bell, L., Touma, D., White, K., Chen, Y., Glycine loss and Maillard browning as related to the glass transition in a model food system (1998) Journal of Food Science, 63, pp. 625-628
  • Bell, L., White, K., Chen, Y., Maillard reaction as affected by buffer type and concentration (1998) Journal of Food Science, 63, pp. 785-787
  • Biliaderis, C., Lazaridou, A., Mavropoulos, A., Barbayiannis, N., Water plasticization effects on crystallization behavior of lactose in a co-lyophilized amorphous polysaccharide matrix and its relevance to the glass transition (2002) International Journal of Food Properties, 5 (2), pp. 463-482
  • Brake, N., Fennema, O., Glass transition values of muscle tissue (1999) Journal of Food Science, 64 (1), pp. 10-15
  • Buera, M.P., Karel, M., Effect of physical changes on the rates of nonenzymic browning and related reactions (1995) Food Chemistry, 52, pp. 167-173
  • Buera, M.P., Levi, G., Karel, M., Glass transition in poly(vinyl)pyrrolidone: Effect of molecular weight and diluents (1992) Biotechnology Progress, 8, pp. 144-148
  • Buera, M., Resnik, S.L., Colorimetric measurements in a turbid medium: Hydrolized concentrated cheese whey (1989) Die Farbe, pp. 201-214
  • Buera, M.P., Schebor, C., Elizalde, B., Effects of carbohydrate crystallisation on dehydrated food and ingredient formulations (2005) Journal of Food Engineering, 67, pp. 157-165
  • Burin, L., Buera, M., Hough, G., Chirife, J., Thermal resistance of B-galactosidase in dehygdrated dairy model systems as affected by physical and chemical changes (2002) Food Chemistry, 76, pp. 423-430
  • Burin, L., Jouppila, K., Roos, Y., Kansikas, J., Buera, M., Color formation in dehydrated modified whey powder systems as affected by compression an Tg (2000) Journal of Agricultural and Food Chemistry, 48, pp. 5263-5268
  • Burin, L., Jouppila, K., Roos, Y., Kansikas, J., Buera, M., Retention of B-galactosidase activity as related to maillard reaction, lactose crystallization, collapse and glass transition in low moisture whey systems (2004) International Dairy Journal, 76 (4), pp. 123-430
  • del Valle, J., Cuadros, T., Aguilera, J.M., Glass transition and shrinkage during drying and storage of osmosed apple pieces (1998) Food Research International, 31 (3), pp. 191-204
  • Delgado, A., Sun, D., Desorption isotherms and glass transition temperature for chicken meat (2002) Journal of Food Engineering, 55, pp. 1-8
  • Duckworth, R., Solute mobility in relation to water content and water activity (1981) Water activity: Influences on food quality, p. 295. , Rockland L., and Steward G. (Eds), Academic Press, Inc., New York
  • Eichner, K., Karel, M., The influence of water content and water activity on the sugar-amino browning reaction in model systems under various conditions (1972) Journal of Agricultural and Food Chemistry, 20, pp. 218-223
  • Fernández, E., Schebor, C., Chirife, J., Glass transition temperature of regular and lactose hydrolyzed milk powder (2003) Lebensmittel.-Wissenschaft und-Technologie, 36, pp. 547-551
  • Franks, F., Solids aqueous solutions (1993) Pure and Applied Chemistry, 65, pp. 2527-2537
  • Franzen, K., Singh, R., Okos, M., Kinetics of nonenzymatic browning in dried skim milk (1990) Journal of Food Engineering, 11, pp. 225-239
  • Gabarra, P., Hartel, W., Corn syrup solids and their saccharide fractions affect crystallization of amorphous sucrose (1998) Journal of Food Science, 63, pp. 523-528
  • Greenspan, L., Humidity fixed points of binary saturated aqueous solutions (1977) Journal of Research of the National Bureau of Standards, 81 (A), pp. 89-96
  • Hendel, C., Silveira, V., Harrington, W., Rates of nonenzymatic browning of white potato during dehydration (1955) Journal of Food Technology, 9, pp. 433-438
  • Jouppila, K., Roos, Y., Glass transitions and crystallization in milk powder (1994) Journal of Dairy Science, 77, pp. 2907-2915
  • Karmas, R., Buera, M., Karel, M., Effect of glass transition on rates of non-enzymatic browning in food systems (1992) Journal of Agricultural and Food Chemistry, 40, pp. 873-879
  • Karmas, R., Karel, M., The effect of glass transition on Maillard browning in food models (1994) Maillard reactions in chemistry, food, and health, pp. 182-187. , Labuza T., Reineccius G., Monnier V., and O'Brien J. (Eds), Royal Society of Chemistry, Cambridge, UK
  • Koster, K., Glass formation and desiccation tolerance in seeds (1990) Journal of Plant Physiology, 96, pp. 302-304
  • Labuza, T., Baisier, W.M., The kinetics of nonenzymatic browning (1992) Physical chemistry of foods, pp. 595-649. , Schwartzberg H., and Hartel R. (Eds), Marcel Dekker, New York
  • Labuza, T., Saltmarch, M., Kinetics of browning and protein quality loss in whey powders during steady state and nonsteady state storage conditions (1981) Journal of Food Science, 41 (1), pp. 92-96
  • Levine, H., Slade, L., Glass transitions in foods (1992) Physical chemistry of foods, pp. 83-221. , Schwartzberg H., and Hartel R. (Eds), Marcel Dekker, New York
  • Lo, J., Mochizuki, Y., Nagashima, Y., Tanaka, M., Iso, N., Taguchi, T., Thermal transitions of myosins/subfragments from Black Marlin (Makaira mazara) ordinary and dark muscles (1991) Journal of Food Science, 56 (4), pp. 954-957
  • Loncin, M., Jackmain, D., Tutundjian Provost, A., Lenges, J., Bimbenet, J., Influence de l'eau sur les réactions de Maillard (1965) Critical Reviews of the Academy of Science, 206, pp. 3208-3211
  • Mazzobre, M.F., Soto, G., Aguilera, J.M., Buera, M., Crystallization kinetics of Lactose in systems co-lyofilized with trehalose. Analysis by differential scanning calorimetry (2001) Food Research International, 34, pp. 903-911
  • Miao, S., Roos, H., Nonenzymatic browning kinetics in low-moisture food system as affected by matrix composition and crystallization (2005) Journal of Food Science, 70, pp. 69-77
  • Mizrahi, S., Labuza, T.P., Karel, M., Feasibility of accelerated tests for browning in dehydrated cabbage (1970) Journal of Food Science, 35, pp. 799-803
  • O'Brien, J., Stability of trehalose, sucrose and glucose to nonenzymatic browning in model systems (1996) Journal of Food Science, 61, pp. 679-682
  • Qin, H., (1991) Analytical chemistry of wine, pp. 453-455. , Qin H. (Ed), Light Industry Press of China, Beijing
  • Roos, Y., Jouppila, K., Zielasko, B., Non-enzymatic browning-induced water plasticization. Glass transition temperature depression and reaction kinetics determination using DSC (1996) Journal of Thermal Analysis, 47 (5), pp. 1437-1450
  • Roos, Y., Karel, M., Amorphous state and delayed ice formation in sucrose solutions (1991) International Journal of Food Science and Technology, 26, pp. 553-566
  • Schebor, C., Buera, M., Karel, M., Chirife, J., Color formation due to non-enzymatic browning in amorphous, glassy, anhydrous, model systems (1999) Food Chemistry, 65, pp. 427-432
  • Slade, L., Levine, H., Finley, J., Protein-water interactions: Water as a plasticizer of gluten and other protein polymers (1989) Protein quality and the effects of processing, pp. 9-124. , Phillips R., and Finley J. (Eds), Marcel Dekker, New York
  • Sun, W., Leopold, C., Glassy state and seed storage stability: A viability equation analysis (1994) Annals of Botany, 71, pp. 601-604
  • Tolaba, M., Peltzer, M., Enriquez, N., Pollio, M., Grain sorption equilibria of quinoa grains (2004) Journal of Food Engineering, 61, pp. 365-371
  • Toribio, J., Nunez, R., Lozano, J., Influence of water activity on the nonenzymatic browning of apple juice concentrate during storage (1984) Journal of Food Science, 49, pp. 1630-1631
  • van Boekel, M., Kinetics aspects of the Maillard reaction: A critical review (2001) Nahrung/Food, 45, pp. 150-159
  • White, K., Bell, L., Glucosa loss and Maillard browning in solids as affected by porosity and collapse (1999) Journal of Food Science, 64, pp. 1010-1014

Citas:

---------- APA ----------
Acevedo, N., Schebor, C. & Buera, M.P. (2006) . Water-solids interactions, matrix structural properties and the rate of non-enzymatic browning. Journal of Food Engineering, 77(4), 1108-1115.
http://dx.doi.org/10.1016/j.jfoodeng.2005.08.045
---------- CHICAGO ----------
Acevedo, N., Schebor, C., Buera, M.P. "Water-solids interactions, matrix structural properties and the rate of non-enzymatic browning" . Journal of Food Engineering 77, no. 4 (2006) : 1108-1115.
http://dx.doi.org/10.1016/j.jfoodeng.2005.08.045
---------- MLA ----------
Acevedo, N., Schebor, C., Buera, M.P. "Water-solids interactions, matrix structural properties and the rate of non-enzymatic browning" . Journal of Food Engineering, vol. 77, no. 4, 2006, pp. 1108-1115.
http://dx.doi.org/10.1016/j.jfoodeng.2005.08.045
---------- VANCOUVER ----------
Acevedo, N., Schebor, C., Buera, M.P. Water-solids interactions, matrix structural properties and the rate of non-enzymatic browning. J Food Eng. 2006;77(4):1108-1115.
http://dx.doi.org/10.1016/j.jfoodeng.2005.08.045