Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The viscosities of a unifloral honey and supersaturated sugar solutions were measured between -5 and 70 °C. All systems exhibited Newtonian behavior with reducing viscosity as increasing temperature. Four models (Arrhenius, VTF, WLF and Power Law) were investigated to describe the temperature dependence of viscosity. Among the different ways of using the WLF model, the method of reduced variables was the most suitable way to calculate coefficients. Oppositely, the WLF with "universal coefficients" badly predicted the temperature dependence of viscosity. When the calculated and experimental points were plotted as a function of (T - Tg), WLF (with coefficients calculated by the reduced variables method), VTF and power law models fitted the experimental data in a better trend than the Arrhenius equation. Also, the extrapolation of fitted curves into the glass transition region, showed that the Arrhenius model predicts the lowest viscosity values, while the WLF model (with coefficients calculated by the reduced model method) predicts the highest viscosity values in that region. VTF and Power Law models provided curves with intermediate solutions between Arrhenius and WLF model. © 2005 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Modeling temperature dependence of honey viscosity and of related supersaturated model carbohydrate systems
Autor:Recondo, M.P.; Elizalde, B.E.; Buera, M.P.
Filiación:Departamento de Industrias, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Ciudad Universitaria, Buenos Aires, Argentina
Palabras clave:Arrhenius; Glass transition; Honey; Power Law models; Sugar systems; Viscosity; VTF; WLF; Glass transition; Mathematical models; Sugar (sucrose); Thermal effects; Viscosity; Viscous flow; Arrhenius; Honey; Power law models; Sugar systems; VTF; Newtonian flow
Año:2006
Volumen:77
Número:1
Página de inicio:126
Página de fin:134
DOI: http://dx.doi.org/10.1016/j.jfoodeng.2005.06.054
Título revista:Journal of Food Engineering
Título revista abreviado:J Food Eng
ISSN:02608774
CODEN:JFOED
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02608774_v77_n1_p126_Recondo

Referencias:

  • Angell, C.A., Bressel, D.R., Green, J.L., Kanno, H., Oguni, M., Sare, E.J., Liquid fragility and the glass transition in water aqueous solutions (1994) Journal of Food Engineering, 22, pp. 115-142
  • Bhandari, B., D'Arcy, B., Kelly, C., Rheology and crystallization kinetics of honeys (1999) International Journal Food Properties, 2, pp. 217-226
  • Blanshard, J.M.V., Liliford, P.J., (1993) The glassy state in foods, , Nottingham University Press, Loughborough, UK
  • Buera, M.P., Karel, M., Application of the WLF equation to describe the combined effects of moisture and temperature on non- enzymatic browning en foods (1993) Journal of Food Processing and Preservation, 17, pp. 31-45
  • Couchman, P.R., Karasz, F.E., A chemical thermodynamic discussion of the effect of composition in glass transition temperatures (1978) Macromolecules, 11, pp. 117-119
  • Ferry, J.D., (1980) Viscoelastic properties of polymers, , John Wiley, New York pp. 264-272
  • Hill, R.M., Dissado, L.A., The temperature dependence of relaxation processes (1982) Journal of Physics C. Solid State Physics, 15, pp. 5171-5193
  • Junzgeng, P., Changying, J., General rheological model for natural honeys in China (1998) Journal of Food Engineering, 36, pp. 165-168
  • Kerr, W.L., Reid, D.S., Temperature dependence of the viscosity of sugars and maltodextrins in coexistence with ice (1994) Lebensmittel-Wissenchaft und -Technologie, 27, pp. 225-231
  • Kerr, W.L., Lim, M.H., Reid, D.S., Chemical kinetics in relation to glass transition temperature in frozen food polymers solutions (1993) Journal of Food Science and Agriculture, 61, pp. 512-526
  • Maltini, E., Anese, M., Evaluation of viscosities of amorphous phases in partially frozen systems by WLF kinetics and glass transition temperatures (1995) Food Research International, 28, pp. 367-372
  • Maltini, E., Manzocco, L., Experimental and predicted viscosities of model solutions at temperatures above the glass transitions (1997) Proceedings of ISOPOW, 7, pp. 57-60
  • Matveev, Y.I., Grinberg, V.Y., Tolstoguzov, V.B., The plasticing effect of water on proteins, polysaccharides and their mixtures. Glassy state of biopolymers, food and seeds (2000) Food Hydrocolloids, 14, pp. 425-437
  • Mazzobre, M.F., Soto, G., Aguilera, J.M., Buera, P., Crystallization kinetics of lactose in systems co-lyophilized with trehalose. Analysis by differential scanning calorimetry (2001) Food Research International, pp. 1-9
  • Mossel, B., Bhandari, B., D'Arcy, B., Caffin, N., Arrhenius model to predict rheological behavior in some Australian honeys (2000) Lebensmittel-Wissenchaft und-Technologie, 33, pp. 545-552
  • Munro, J.A., The viscosity and thixotropy of honey (1943) Journal of Economic Entomology, 36, pp. 769-771
  • Nelson, K.A., Labuza, T.P., Water activity and food polymer science: implications of state on Arrhenius and WLF models in predicting shelf life (1994) Journal of Food Engineering, 22, pp. 271-289
  • Ollet, A.L., Parker, R., The viscosity of supercooled fructose and its glass transition temperature (1990) Journal of Texture Study, 21, pp. 355-362
  • Parker, R., Ring, S.G., A theoretical analysis of diffusion controlled reactions in frozen solutions (1995) Cryoletters, 16, pp. 197-208
  • Peleg, M., On the use of the WLF model in polymers and foods (1992) Critical Reviews in Food Science and Nutrition, 32, pp. 59-66
  • Roos, Y., Karel, M., Phase transition of mixtures of amorphous polysaccharides and sugars (1991) Biotechnology Progress, 7, pp. 49-53
  • Roos, Y.H., (1995) Phase transition in foods, , (Chapters 2, 5, 7), Academic Press, New York
  • Rubin, C.E., Wasylyk, J.M., Baust, J.G., Investigation of vitrification by nuclear magnetic resonance and differential magnetic resonance and differential scanning calorimetry in honey and model carbohydrate systems (1990) Journal of Agriculture and Food Chemistry, 38, pp. 1824-1827
  • Slade, L., Levine, H., Beyond water activity: recent advances on an alternative approach to the assessment of food quality and safety (1991) Critical Reviews in Food Science and Nutrition, 30, pp. 115-360
  • Soesanto, T., Willams, M.C., Volumetric interpretation of the viscosity for concentrated and dilute sugars solutions (1981) Journal of Physics Chemistry, 85, pp. 3338-3341
  • Sopade, P.A., Bhandari, B., Halley, P., D'Arcy, B., Caffin, N., Glass transition in Australian honeys (2001) Food Australia, 53, pp. 399-404
  • Sopade, P.A., Halley, P., Bhandari, B., D'Arcy, B., Doebler, C., Caffin, N., Application of the Willam-Landel-Ferry model to the viscosity-temperature relationship of Australian honeys (2002) Journal of Food Engineering, 56, pp. 67-75
  • White, J.W., Honey (1978) Advances in Food Research, 24, pp. 287-374
  • Willams, M.L., Landel, R.F., Ferry, D.H., Temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids (1955) Journal of the American Chemical Society, 77, pp. 3701-3706
  • Zoltán, K., Pitsi, G., Thoen, Glass transition temperature of honey as a function of water activity as determined by differential scanning calorimetry (1999) Journal of Agriculture and Food Chemistry, 47, pp. 2327-2330

Citas:

---------- APA ----------
Recondo, M.P., Elizalde, B.E. & Buera, M.P. (2006) . Modeling temperature dependence of honey viscosity and of related supersaturated model carbohydrate systems. Journal of Food Engineering, 77(1), 126-134.
http://dx.doi.org/10.1016/j.jfoodeng.2005.06.054
---------- CHICAGO ----------
Recondo, M.P., Elizalde, B.E., Buera, M.P. "Modeling temperature dependence of honey viscosity and of related supersaturated model carbohydrate systems" . Journal of Food Engineering 77, no. 1 (2006) : 126-134.
http://dx.doi.org/10.1016/j.jfoodeng.2005.06.054
---------- MLA ----------
Recondo, M.P., Elizalde, B.E., Buera, M.P. "Modeling temperature dependence of honey viscosity and of related supersaturated model carbohydrate systems" . Journal of Food Engineering, vol. 77, no. 1, 2006, pp. 126-134.
http://dx.doi.org/10.1016/j.jfoodeng.2005.06.054
---------- VANCOUVER ----------
Recondo, M.P., Elizalde, B.E., Buera, M.P. Modeling temperature dependence of honey viscosity and of related supersaturated model carbohydrate systems. J Food Eng. 2006;77(1):126-134.
http://dx.doi.org/10.1016/j.jfoodeng.2005.06.054