Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Osmotic dehydration of apple tissue (Malus pumila, Granny Smith cultivar) to water activity (aw) 0.97 or 0.94 with maltose or maltose syrup solutions was studied and compared with previous results using glucose or trehalose as humectants. Structure (optical and transmission electronic microscopy observations), rheological properties (small scale dynamic oscillatory and creep/recovery measurements and large scale compression force-deformation testing), and water mobility (1H NMR spectra) of parenchymatous apple tissue were significantly affected by osmotic treatments. Osmotically dehydrated apples became soft and extensible and lost crispness and hardness, while the behavior of the moduli G′ and G″ indicated weaker gels after osmosis. Compression properties of the tissues abruptly changed after osmotic dehydration to aw 0.97, while reduction to aw 0.94 led to a compression response more similar to that of untreated apples. Compression behavior and state and distribution of water in apple tissues were influenced by the osmotic agent employed and the a w level, while in general mechanical spectra and creep analysis were not able for distinguishing physical differences between osmotic treatments assayed. © 2013 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Osmotic dehydration of apple: Influence of sugar and water activity on tissue structure, rheological properties and water mobility
Autor:Nieto, A.B.; Vicente, S.; Hodara, K.; Castro, M.A.; Alzamora, S.M.
Filiación:Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, 1428 Ciudad Autónoma de Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina
Departamento de Métodos Cuantitativos y Sistemas de Información, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE Ciudad Autónoma de Buenos Aires, Argentina
Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, 1428 Ciudad Autónoma de Buenos Aires, Argentina
Professional of Comision de Investigaciones Cientificas de la Provincia de Buenos Aires, Calle 526 entre 10 y 11, 1900 La Plata, Argentina
Fundación ICTB de la Cruz, Dorronzoro 141, B6700FTA Luján, Argentina
Palabras clave:Apple; Osmosis; Rheology; Structure; Sugars; Water mobility; Apple; Compression behavior; Compression properties; Distribution of water; Rheological property; Small-scale dynamics; Transmission electronic microscopies; Water mobility; Dehydration; Fruits; Histology; Light transmission; Maltose; Nuclear magnetic resonance spectroscopy; Rheology; Structure (composition); Sugars; Tissue; Osmosis; Malus pumila; Malus x domestica
Año:2013
Volumen:119
Número:1
Página de inicio:104
Página de fin:114
DOI: http://dx.doi.org/10.1016/j.jfoodeng.2013.04.032
Título revista:Journal of Food Engineering
Título revista abreviado:J Food Eng
ISSN:02608774
CODEN:JFOED
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02608774_v119_n1_p104_Nieto

Referencias:

  • Alzamora, S.M., Cerrutti, P., Guerrero, S., López-Malo, A., Minimally processed fruits by combined methods (1995) Food Preservation by Moisture Control: Fundamentals and Applications, pp. 463-492. , G.V. Barbosa-Cánovas, J. Welti-Chanes, Technomics Publishing Co Lancaster, USA
  • Alzamora, S.M., Castro, M.A., Nieto, A.B., Vidales, S.L., Salvatori, D.M., The rol of tissue microstructure in the textural characteristics of minimally processed fruits (2000) Minimally Processed Fruits and Vegetables, pp. 153-171. , S.M. Alzamora, M.S. Tapia, A. López-Malo, Aspen Publishers Inc. Maryland, USA
  • Alzamora, S.M., Viollaz, P.E., Martínez, V.Y., Nieto, A.B., Salvatori, D.M., Exploring the linear viscoelastic properties structure relationship in processed fruit tissues (2008) Food Engineering: Integrated Approaches, pp. 133-214. , G.E. Gutiérrez-López, G.V. Barbosa-Cánovas, J. Welti-Chanes, E. Parada-Arias, Springer New York, USA
  • Calzada, J.F., Peleg, M., Mechanical interpretation of compressive stress-strain relationships of solid foods (1978) Journal of Food Science, 43, pp. 1087-1092
  • Carpita, N.C., Gibeaut, D.M., Structural models of primary cell walls in flowering plants: Consistency of molecular structure with the physical properties of the walls during growth (1993) Plant Journal, 3, pp. 1-30
  • Ceroli, P., (2009) Efecto Del Soluto Durante la Deshidratación-impregnación Con Azúcares en Las Características Mecánicas de Tejido de Manzana y de Melón A Altas Deformaciones, , Thesis Maestría en Bromatología y Tecnología de la Industrialización de Alimentos. Universidad de Buenos Aires, Argentina
  • Crowe, L.M., Reid, D.S., Crowe, J.H., Is trehalose special for preserving dry biomaterials? (1996) Biophysical Journal, 71 (4), pp. 2087-2093
  • Ferrando, M., Spiess, W.E.L., Cellular response of plant tissue during the osmotic treatment with sucrose, maltose, and trehalose solutions (2001) Journal of Food Engineering, 49 (2-3), pp. 115-127. , DOI 10.1016/S0260-8774(00)00218-1, PII S0260877400002181
  • Galmarini, M.V., Chirife, J., Zamora, M.C., Perez, A., Determination and correlation of the water activity of unsaturated, supersaturated and saturated trehalose solutions (2008) Lebensmittel Wissenschaft und Technologie, 41, pp. 628-631
  • Hills, B.P., Duce, S.L., The influence of chemical and diffusive exchange on water proton transverse relaxation in plant tissues (1990) Magnetic Resonance Imaging, 8 (3), pp. 321-331. , DOI 10.1016/0730-725X(90)90106-C
  • Hills, B.P., Remigereau, B., NMR studies of changes in subcellular water compartmentation in parenchyma apple tissue during drying and freezing (1997) International Journal of Food Science and Technology, 32 (1), pp. 51-61
  • Hills, B.P., Takacs, S.F., Belton, P.S., A new interpretation of proton NMR relaxation time measurements of water in food (1990) Food Chemistry, 37 (2), pp. 95-111. , DOI 10.1016/0308-8146(90)90084-H
  • Jackman, R., Stanley, D., Perspectives in the textural evaluation of plant foods (1995) Trends in Food Science and Technology, 6, pp. 187-194
  • Jackman, R.L., Stanley, D.W., Creep Behaviour of Tomato Pericarp Tissue as Influenced by Ambient Temperature Ripening and Chilled Storage (1995) Journal of Texture Studies, 26 (5), pp. 537-552
  • Khan, S.A., Roger, J.R., Raghavan, S.R., Rheology: Tools and methods (1997) Aviation Fuels with Improved Fire Safety. Proceedings, , The National Academy of Sciences (Ed.) Washington DC, USA
  • Lewicki, P.P., Water as the determinant of food engineering properties. A review (2004) Journal of Food Engineering, 61, pp. 483-495
  • Lillford, P.J., Mechanisms of fracture in foods (2001) Journal of Texture Studies, 32 (5-6), pp. 397-417
  • Mittal, J.P., Mohsenin, N.N., Rheological characterization of apple cortex (1987) Journal of Texture Studies, 18, pp. 65-93
  • McGarigal, K., Cushman, S., Stafford, S., (2000) Multivariate Statistics for Wildlife and Ecology Research, , Springer-Verlag New York, USA
  • Norrish, R.S., An equation for the activity coefficients and equilibrium relative humidities of water in confectionery syrups (1966) Journal of Food Technology, 1, pp. 25-39
  • Patist, A., Zoerb, H., Preservation mechanisms of trehalose in food and biosystems (2005) Colloids and Surfaces B: Biointerfaces, 40 (2), pp. 107-113. , DOI 10.1016/j.colsurfb.2004.05.003, PII S0927776504001353
  • Peleg, M., A note on the various strain measurements at large compressive deformations (1984) Journal of Texture Studies, 15 (4), pp. 317-326
  • Pitt, R., Viscoelastic properties of fruits and vegetables (1992) Viscoelastic Properties of Foods, pp. 49-76. , M.A. Rao, J.F. Steffe, Elsevier London & New York
  • Pizzocaro, F., Torreggiani, D., Gilardi, G., Inhibiton of apple polyphenoloxidase (PPO) by ascorbic acid, citric acid and sodium chloride (1993) Journal of Food Processing and Preservation, 17, pp. 21-30
  • Quinn, G.P., Keough, M.J., (2002) Experimental Design and Data Analysis for Biologists, , Cambridge University Press New York, USA
  • Raffo, A., Gianferri, R., Barbieri, R., Brosio, E., Ripening of banana fruit monitored by water relaxation and diffusion 1H-NMR measurements (2005) Food Chemistry, 89 (1), pp. 149-158. , DOI 10.1016/j.foodchem.2004.02.024, PII S0308814604001888
  • Resnik, S.L., Favetto, G., Chirife, J., Ferro Fontán, C., A world survey of water activity values of certain saturated solutions at 25 C (1984) Journal of Food Science, 49, pp. 510-516
  • Reynolds, E.S., The use of lead citrate at high pH as an electron opaque stain in electron microscopy (1963) Journal of Cell Biology, 17, pp. 208-212
  • Sherman, P., (1970) Industrial Rheology, , Academic Press New York, USA
  • Snaar, J.E.M., Van As, H., Probing water compartments and membrane permeability in plant cells by 1H NMR relaxation measurements (1992) Biophysical Journal, 63 (6), pp. 1654-1658
  • Sorrivas, V., Morales, A., (1983) Introducción A la Microscopía Electrónica, , Centro Regional de Investigaciones Básicas y Aplicadas de Bahía Blanca & Banco del Sud, Bahía Blanca, Argentina
  • Vicente, S., Nieto, A.B., Hodara, K., Castro, M.A., Alzamora, S.M., Structure, rheology, and water mobility of apple tissue induced by osmotic dehydration with glucose or trehalose (2012) Food and Bioprocess Technology, 5, pp. 3075-3089
  • Vittadini, E., Effects of water distribution and transport on food microstructure (2007) Understanding and Controlling the Microstructure of Complex Foods, pp. 89-112. , J. McClements, Woodhead Publishing Limited Cambridge, England
  • Waldron, K.W., Smith, A.C., Parr, A.J., Ng, A., Parker, M.L., New approaches to understanding and controlling cell separation in relation to fruit and vegetable texture (1997) Trends in Food Science and Technology, 8 (7), pp. 213-221. , DOI 10.1016/S0924-2244(97)01052-2, PII S0924224497010522
  • Waldron, K.W., Parker, M.L., Smith, A.C., Plant cell walls and food quality (2003) Comprehensive Reviews in Food Science and Food Safety, 2, pp. 128-146
  • Wilson, R.H., Smith, A.C., Kacuracova, M., Saunders, P.K., Wellner, N., Waldron, K.W., The mechanical properties and molecular dynamics of plant cell wall polysaccharides studied by Fourier-transform infrared spectroscopy (2000) Plant Physiology, 124, pp. 397-405

Citas:

---------- APA ----------
Nieto, A.B., Vicente, S., Hodara, K., Castro, M.A. & Alzamora, S.M. (2013) . Osmotic dehydration of apple: Influence of sugar and water activity on tissue structure, rheological properties and water mobility. Journal of Food Engineering, 119(1), 104-114.
http://dx.doi.org/10.1016/j.jfoodeng.2013.04.032
---------- CHICAGO ----------
Nieto, A.B., Vicente, S., Hodara, K., Castro, M.A., Alzamora, S.M. "Osmotic dehydration of apple: Influence of sugar and water activity on tissue structure, rheological properties and water mobility" . Journal of Food Engineering 119, no. 1 (2013) : 104-114.
http://dx.doi.org/10.1016/j.jfoodeng.2013.04.032
---------- MLA ----------
Nieto, A.B., Vicente, S., Hodara, K., Castro, M.A., Alzamora, S.M. "Osmotic dehydration of apple: Influence of sugar and water activity on tissue structure, rheological properties and water mobility" . Journal of Food Engineering, vol. 119, no. 1, 2013, pp. 104-114.
http://dx.doi.org/10.1016/j.jfoodeng.2013.04.032
---------- VANCOUVER ----------
Nieto, A.B., Vicente, S., Hodara, K., Castro, M.A., Alzamora, S.M. Osmotic dehydration of apple: Influence of sugar and water activity on tissue structure, rheological properties and water mobility. J Food Eng. 2013;119(1):104-114.
http://dx.doi.org/10.1016/j.jfoodeng.2013.04.032