Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The inactivation of polyphenoloxidase (PPO) and peroxidase (POX) in red beet by traditional and microwave (MW) blanching was studied. Microwave heating effects on color and texture were also studied. Red beet subjected to MW blanching for 5 min at 100-200 W resulted in large weight losses accompanied by a high degree of shrinking. POX was the more heat resistant enzyme. The 90% destruction (D value) of the activity of both enzymes could be achieved only at 200 W within the 5 min frame employed for the tests. When the samples were immersed in water and both the food sample and the water were submitted to MW exposure at 250-450 W or variable power with a maximum at 935 W, shrinking was avoided. The D value at 90 °C (reference; DTref) and z could be determined after time-temperature corrections, and it was observed that, in general, DTref values for POX were smaller than for PPO. The microwave treatment (maximum power: 935 W) designed to provide a similar temperature profile to the one observed for traditional blanching (immersion in water at 90 °C), showed the smallest DTref value for POX inactivation. All treatments reduced elastic characteristics and changed the color of the tissues showing a shift to blue mainly in the case of microwave processes. © 2011 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Microwave inactivation of red beet (Beta vulgaris L. var. conditiva) peroxidase and polyphenoloxidase and the effect of radiation on vegetable tissue quality
Autor:Latorre, M.E.; Bonelli, P.R.; Rojas, A.M.; Gerschenson, L.N.
Filiación:Industry Department, Natural and Exact Sciences School, University of Buenos Aires (UBA), Intendente Güiraldes 2620, (1428) Ciudad Autónoma de Buenos Aires, Argentina
Palabras clave:Blanching; Color; Enzymes; Microwave; Red beet; Texture; Beta vulgaris; Elastic characteristic; Food samples; Heat resistant; Maximum power; Microwave process; Microwave treatment; Polyphenol oxidase; Red beet; Temperature profiles; Time-temperature; Tissue quality; Variable power; Weight loss; Blanching; Color; Enzymes; Microwave heating; Plants (botany); Radiation effects; Shrinkage; Textures; Thermal processing (foods); Tissue; Microwaves; Beta vulgaris; Beta vulgaris subsp. vulgaris
Año:2012
Volumen:109
Número:4
Página de inicio:676
Página de fin:684
DOI: http://dx.doi.org/10.1016/j.jfoodeng.2011.11.026
Título revista:Journal of Food Engineering
Título revista abreviado:J Food Eng
ISSN:02608774
CODEN:JFOED
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02608774_v109_n4_p676_Latorre

Referencias:

  • Akarapu, R., Li, B.Q., Huo, Y., Tang, J., Liu, F., Integrated modeling of microwave food processing and comparison with experimental measurements (2004) Journal of Microwave Power and Electromagnetic Energy, 39 (3-4), pp. 153-166
  • Andres, A., Betoret, N., Bernardet, G., Fito, P., Microwave-assisted air drying of cassara slices (2004) Proceedings of the 14th International Drying Symposium, San Pablo, Brazil, pp. 1599-1603
  • Barret, D.M., Theerakulkait, C., Quality indicators in blanched, frozen, stored vegetables (1995) Food Technology, 49 (1), pp. 62-64
  • Begum, S., Brewer, M.S., Microwave blanching effects on color, chemical and sensory characteristics of frozen asparagus (1996) Journal of Food Quality, 20, pp. 471-481
  • Begum, S., Brewer, M.S., Physical, chemical and sensory quality of microwave-blanched snow peas (2001) Journal of Food Quality, 24 (6), pp. 479-493
  • Bohr, H., Bohr, J., Microwave enhanced kinetics observed in ORD studies of a protein (2000) Bioelectromagnetics, 21, pp. 68-72
  • Brewer, M.S., Begum, S., Effect of microwave power level and time on ascorbic acid content, peroxidase activity and color of selected vegetables (2004) Journal of Food Processing and Preservation, 27 (6), pp. 411-426
  • Chen, S.C., Collins, J.L., McCarty, I.E., Johnston, M.R., Blanching of white potatoes by microwave energy followed by boiling water (1971) Journal of Food Science, 36, pp. 742-743
  • Collins, J.L., McCarty, I.E., Comparison of microwave energy with boiling water for blanching whole potatoes (1969) Food Technology, 23, pp. 337-340
  • Coseteng, M.Y., Lee, C.Y., Changes in apple polyphenol concentrations in relation to degree of browning (1987) Journal of Food Science, 52 (4), pp. 985-989
  • Cruz, R.M.S., Vieira, M.C., Silva, C.L.M., Modelling kinetics of watercress (Nasturtium officinale) colour changes due to heat and thermosonication treatments (2007) Innovative Food Science and Emerging Technologies, 8 (2), pp. 244-252. , DOI 10.1016/j.ifset.2007.01.003, PII S1466856407000057
  • Dallinger, D., Kappe, C.O., Microwave-assisted synthesis in water as solvent (2007) Chemical Reviews, 107 (6), pp. 2563-2591. , DOI 10.1021/cr0509410
  • Deng, Y., Singh, R.K., Lee, J.H., Estimation of temperature profiles in microwaved particulates using enzyme and vision system (2003) LWT - Food Science and Technology, 36 (3), pp. 331-338. , DOI 10.1016/S0023-6438(03)00021-5
  • Flick, Jr.G.J., Burnnette, F.S., Aung, L.H., Ory, R.L., St. Angelo, A.J., Chemical composition and biochemical properties of mirlitons (Sechium edule) and purple, green and white eggplants (Solanum melongena) (1978) Journal of Agricultural and Food Chemistry, 26, pp. 1000-1005
  • Fry, S.C., Cross-linking of matrix polymers in the growing cell walls of angiosperms (1986) Annual Review of Plant Physiology, 37, pp. 165-186
  • Geveke, D.J., Brunkhorst, C., Inactivation of Saccharomyces cerevisiae with radio frequency electric fields (2003) Journal of Food Protection, 66 (9), pp. 1712-1715
  • Gliszczynska-Swiglo, A., Antioxidant activity of water soluble vitamins in the TEAC (trolox equivalent antioxidant capacity) and the FRAP (ferric reducing antioxidant power) assays (2006) Food Chemistry, 96 (1), pp. 131-136. , DOI 10.1016/j.foodchem.2005.02.018, PII S0308814605001676
  • Hayashi, R., (2002) Trends in High Pressure Bioscience and Biotechnology, 19. , Elsevier Series: Progress in Biotechnology London, UK pp. 1-652
  • Heddleson, R.A., Doores, S., Factors affecting microwave heating of foods and microwave induced destruction of foodborne pathogens - A review (1994) Journal of Food Protection, 57, pp. 1025-1037
  • Hemeda, H.M., Klein, B.P., Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts (1990) Journal of Food Science, 55 (1), pp. 184-186
  • Kanner, J., Harel, S., Granit, R., Betalains - A new class of dietary cationized antioxidants (2001) Journal of Agricultural and Food Chemistry, 49 (11), pp. 5178-5185. , DOI 10.1021/jf010456f
  • Kermasha, S., Bisakowski, B., Ramaswamy, H.S., Van De Voort, F.R., Comparison of microwave, conventional and combination treatments inactivation on wheat germ lipase activity (1993) International Journal of Food Science and Technology, 28, pp. 617-623
  • Kermasha, S., Bisakowski, B., Ramaswamy, H.S., Van De Voort, F.R., Thermal and microwave inactivation of soybean lipoxygenase (1993) LWT - Food Science and Technology, 26, pp. 215-219
  • Latorre, M.E., Narvaiz, P., Rojas, A.M., Gerschenson, L.N., Effects of gamma irradiation on bio-chemical and physico-chemical parameters of fresh-cut red beet (Beta vulgaris L. var. conditiva) root (2010) Journal of Food Engineering, 98 (2), pp. 178-191
  • Lin, S., Brewer, M.S., Effects of blanching method on the quality characteristics of frozen peas (2005) Journal of Food Quality, 28 (4), pp. 350-360. , DOI 10.1111/j.1745-4557.2005.00038.x
  • Lin, M., Ramaswamy, H.S., Evaluation of phosphatase inactivation kinetics in milk under continuous flow microwave and conventional heating conditions (2011) International Journal of Food Properties, 14 (1), pp. 110-123
  • Liu, X., Gao, Y., Peng, X., Yang, B., Xu, H., Zhao, J., Inactivation of peroxidase and polyphenol oxidase in red beet (Beta vulgaris L.) extract with high pressure carbon dioxide (2008) Innovative Food Science and Emerging Technologies, 9 (2), pp. 4-31
  • Liu, X., Gao, Y., Wang, Q., Yang, B., Impact of high-pressure carbon dioxide combined with thermal treatment on degradation of red beet (Beta vulgaris L.) pigments (2008) Journal of Agricultural and Food Chemistry, 56, pp. 6480-6487
  • Liu, X., Gao, Y., Xu, H., Hao, K., Liu, G., Wang, Q., Inactivation of peroxidase and polyphenol oxidase in red beet (Beta vulgaris L.) extract with continuous high pressure carbon dioxide (2010) Food Chemistry, 119, pp. 108-113
  • Lowry, O.H., Rosebrough, N.J., Randall, R.J., Protein measurement with the Folin phenol reagent (1951) Journal of Biological Chemistry, 193, pp. 265-275
  • Marangoni, A.G., Jackman, R.L., Stanley, D.W., Chilling associated softening of tomato fruit is related to increased pectinmethylesterase activity (1995) Journal of Food Science, 60 (6), pp. 1277-1281
  • Matsui, K.N., Wilhelms Gut, J.A., De Oliveira, P.V., Tadini, C.C., Inactivation kinetics of polyphenol oxidase and peroxidase in green coconut water by microwave processing (2008) Journal of Food Engineering, 88, pp. 169-176
  • Nussinovitch, A., Peleg, M., Normand, M.D., A modified Maxwell and a non-exponential model for the characterization of the stress-relaxation of agar and alginate gels (1989) Journal of Food Science, 54, pp. 1013-1016
  • Orsat, V., Raghavan, V., Meda, V., Microwave technology for food processing: An overview (2005) The Microwave Processing of Foods, pp. 105-118. , Helmar Schubert, Marc Regier, Taylor and Francis CRC Press, Washington DC
  • Peleg, M., Calzada, J.F., Stress relaxation of deformed fruits and vegetables (1976) Journal of Food Science, 41, pp. 1325-1329
  • Perreux, L., Loupy, A., A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations (2001) Tetrahedron, 57 (45), pp. 9199-9223. , DOI 10.1016/S0040-4020(01)00905-X, PII S004040200100905X
  • Quenzer, N.M., Burns, E.E., Effects of microwave, steam and water blanching of freeze-dried spinach (1981) Journal of Food Science, 46 (2), pp. 410-413
  • Ramaswamy, H.S., Fakhouri, M.O., Microwave Blanching : Effect on Peroxidase Activity, Texture and Quality of Frozen Vegetables (1998) Journal of Food Science and Technology, 35 (3), pp. 216-222
  • Ramesh, M.N., Wolf, W., Tevini, D., Bognar, A., Microwave blanching of vegetables (2002) Journal of Food Science, 67 (1), pp. 390-398
  • Richard-Forget, F.C., Gauillard, F.A., Oxidation of Chlorogenic Acid, Catechins, and 4-Methylcatechol in Model Solutions by Combinations of Pear (Pyrus communis Cv. Williams) Polyphenol Oxidase and Peroxidase: A Possible Involvement of Peroxidase in Enzymatic Browning (1997) Journal of Agricultural and Food Chemistry, 45 (7), pp. 2472-2476
  • Roberts, J., Walker, L.T., Anderson, J.C., Assessment of microwave blanching as a preparatory tool for home freezing of yellow squash (Curcubita pepo) (2004) Institute of Food Technologist Annual Meeting, Las Vegas, NV. 67C-32
  • Rojas, A.M., Marangoni, A.G., Gerschenson, L.N., Latorre, M.E., De Escalada Plá, M.F., Relative contributions of turgor, cell wall and middle lamella to the mechanical performance of vegetable tissues determined through controlled osmotic stress (2011) Food Engineering, pp. 1-59. , Brendan.C. Siegler, Nova Science Publishers Hauppauge, New York, USA
  • Sanchez-Ferrer, A., Rodríguez-López, J.N., García- Cánovas, F., García-Carmona, F., Tyrosinase: A comprehensive review of its mechanism (1995) Biochimica et Biophysica Acta, 1247, pp. 1-11
  • Schwartz, S.J., Von Elbe, J.H., Jackman, R.L., Smith, J.L., Quantitative determination of individual betacyanin pigments by high performance liquid chromatography (1980) Journal of Agricultural and Food Chemistry, 28, pp. 540-543
  • Sepulveda-Jimenez, G., Rueda-Benitez, P., Porta, H., Rocha-Sosa, M., Betacyanin synthesis in red beet (Beta vulgaris) leaves induced by wounding and bacterial infiltration is preceded by an oxidative burst (2004) Physiological and Molecular Plant Pathology, 64 (3), pp. 125-133. , DOI 10.1016/j.pmpp.2004.08.003, PII S088557650400089X
  • Shazman, A., Mizrahi, S., Cogan, U., Shimoni, E., Examining for possible non-thermal effects during heating in a microwave oven (2007) Food Chemistry, 103 (2), pp. 444-453. , DOI 10.1016/j.foodchem.2006.08.024, PII S0308814606006704
  • Somani Omprakash, G., Choudhari Anant, L., Rao, B.S., Mirajkar, S.P., Enhancement of crystallization rate by microwave radiation: Synthesis of ZSM-5 (2003) Materials Chemistry and Physics, 82 (3), pp. 538-545
  • Subramanian, N., Venkatesh, P., Ganguli, S., Sinkar, V.P., Role of polyphenol oxidase and peroxidase in the generation of black tea theaflavins (1999) Journal of Agricultural and Food Chemistry, 47 (7), pp. 2571-2578. , DOI 10.1021/jf981042y
  • Tajchakavit, S., Ramaswamy, H.S., Continuous flow microwave inactivation kinetics of pectin methyl esterase in orange juice (1997) Journal of Food Processing and Preservation, 21 (5), pp. 365-378
  • Tang, J., Dielectric properties of foods (2005) Microwave Processing of Foods, pp. 22-38. , Helmar. Schubert, Marc. Regier, Taylor and Francis CRC Press Washington DC
  • Tewari, G., Juneja, V., (2007) Advances in Thermal and Non-thermal Food Preservation, pp. 241-269. , Gaurav. Tewari, Vijay.K. Juneja, Blackwell Publishing Limited Oxford, UK
  • Tomas-Barberan, F.A., Espin, J.C., Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables (2001) Journal of the Science of Food and Agriculture, 81 (9), pp. 853-876. , DOI 10.1002/jsfa.885
  • Vadivambal, R., Jayas, D.S., Changes in quality of microwave-treated agricultural products-a review (2007) Biosystems Engineering, 98 (1), pp. 1-16. , DOI 10.1016/j.biosystemseng.2007.06.006, PII S1537511007001456
  • Venkatesh, M.S., Raghavan, G.S.V., An overview of microwave processing and dielectric properties of agri-food materials (2004) Biosystems Engineering, 88 (1), pp. 1-18. , DOI 10.1016/j.biosystemseng.2004.01.007
  • Vieira, M.C., Teixeira, A.A., Silva, F.M., Gaspar, N., Silva, C.L.M., Alicyclobacillus acidoterrestris spores as a target for Cupuaçu (Theobroma grandiflorum) nectar thermal processing: Kinetic parameters and experimental methods (2002) International Journal of Food Microbiology, 77 (1-2), pp. 71-81. , DOI 10.1016/S0168-1605(02)00043-0, PII S0168160502000430
  • Vural Gökmen, K., Savas-Bahceci, A., Serpen, J.A., Study of lipoxygenase and peroxidase as blanching indicator enzymes in peas: Change of enzyme activity, ascorbic acid and chlorophylls during frozen storage (2005) LWT - Food Science and Technology, 38 (8), pp. 903-908
  • Waldron, K.W., Smith, A.C., Parr, A.J., Ng, A., Parker, M.L., New approaches to understanding and controlling cell separation in relation to fruit and vegetable texture (1997) Trends in Food Science and Technology, 8 (7), pp. 213-221. , DOI 10.1016/S0924-2244(97)01052-2, PII S0924224497010522
  • Waldron, K.W., Ng, A., Parker, M.L., Parr, A.J., Ferulic acid dehydrodimers in the cell walls of Beta vulgaris and their possible role in texture (1997) Journal of the Science of Food and Agriculture, 74 (2), pp. 221-228. , DOI 10.1002/(SICI)1097-0010(199706)74:2<221::AID-JSFA792>3.0.CO;2-Q
  • Walton, D.C., Sondheimer, E., Effects of abscisin ii on phenylalanine ammonia-lyase activity in excised bean axes (1968) Plant Physiology, 43 (3), pp. 467-469
  • Wathey, B., Tierney, J., Lidstrom, P., Westman, J., The impact of microwave-assisted organic chemistry on drug discovery (2002) Drug Discovery Today, 7 (6), pp. 373-380. , DOI 10.1016/S1359-6446(02)02178-5, PII S1359644601021785
  • Williams, D.C., Lim, M.H., Chem, A.O., Pangborgon, R.M., Whitaker, J.R., Blanching of vegetables from freezing-which indicator enzyme to choose (1986) Food Technology, 40 (6), pp. 130-140
  • Yoshikazu, T., Nobuhiro, S., Akemi, O., Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids (2008) The Plant Journal, 54 (4), pp. 733-749

Citas:

---------- APA ----------
Latorre, M.E., Bonelli, P.R., Rojas, A.M. & Gerschenson, L.N. (2012) . Microwave inactivation of red beet (Beta vulgaris L. var. conditiva) peroxidase and polyphenoloxidase and the effect of radiation on vegetable tissue quality. Journal of Food Engineering, 109(4), 676-684.
http://dx.doi.org/10.1016/j.jfoodeng.2011.11.026
---------- CHICAGO ----------
Latorre, M.E., Bonelli, P.R., Rojas, A.M., Gerschenson, L.N. "Microwave inactivation of red beet (Beta vulgaris L. var. conditiva) peroxidase and polyphenoloxidase and the effect of radiation on vegetable tissue quality" . Journal of Food Engineering 109, no. 4 (2012) : 676-684.
http://dx.doi.org/10.1016/j.jfoodeng.2011.11.026
---------- MLA ----------
Latorre, M.E., Bonelli, P.R., Rojas, A.M., Gerschenson, L.N. "Microwave inactivation of red beet (Beta vulgaris L. var. conditiva) peroxidase and polyphenoloxidase and the effect of radiation on vegetable tissue quality" . Journal of Food Engineering, vol. 109, no. 4, 2012, pp. 676-684.
http://dx.doi.org/10.1016/j.jfoodeng.2011.11.026
---------- VANCOUVER ----------
Latorre, M.E., Bonelli, P.R., Rojas, A.M., Gerschenson, L.N. Microwave inactivation of red beet (Beta vulgaris L. var. conditiva) peroxidase and polyphenoloxidase and the effect of radiation on vegetable tissue quality. J Food Eng. 2012;109(4):676-684.
http://dx.doi.org/10.1016/j.jfoodeng.2011.11.026