Artículo

Arzeni, C.; Martínez, K.; Zema, P.; Arias, A.; Pérez, O.E.; Pilosof, A.M.R. "Comparative study of high intensity ultrasound effects on food proteins functionality" (2012) Journal of Food Engineering. 108(3):463-472
La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The objective of this work was to comparatively explore the impact of high intensity ultrasound (HIUS) on the functionality of some of the most used food proteins at the industrial level: whey protein concentrate (WPC), soy protein isolate (500E) and egg white protein (EW). 10% w/w solutions at pH 6.5-7.1 were treated with HIUS for 20 min, in an ultrasonic processor. The operating conditions were: 20 kHz, 4.27 ± 0.71 W and 20% of amplitude. Before and after the HIUS treatment, the size of protein particles was measured by static light scattering. The amount of sulfhydryl groups was determined with Ellman's reagent and the surface hydrophobicity by a fluorescence technique. The effects of HIUS on samples viscosity were determined. The evolution of the elastic (G′) and viscous (G″) moduli as well as tan δ were registered upon time and temperature in a controlled stress rheometer. In general, HIUS promoted a decrease in the consistency index of all protein solutions, mainly of soybean isolate. The gelation performance of EW was not modified by HIUS. However, WPC presented a higher elastic character, but 500E did not show changes upon heating, as it was already denatured before HIUS treatment. The size of aggregates suffered an overall reduction for WPC and 500E, but a slight increase for EW. Sulfhydryl content was unchanged for all proteins after HIUS application but surface hydrophobicity was greatly increased after treatment for all proteins. HIUS affected the studied functional properties differently depending on the size and nature of the protein. This technology could be used to obtain improved functional properties in some protein samples. © 2011 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Comparative study of high intensity ultrasound effects on food proteins functionality
Autor:Arzeni, C.; Martínez, K.; Zema, P.; Arias, A.; Pérez, O.E.; Pilosof, A.M.R.
Filiación:Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Agencia Nacional de Promoción Científica y Tecnológica de la República, Buenos Aires, Argentina
Nacional de Investigación Científica y Tecnológica de la República, Buenos Aires, Argentina
Palabras clave:Dynamic rheology; Gelling properties; High intensity ultrasound; Soy and egg white proteins; Viscosity; Whey protein concentrate; Dynamic rheology; Egg white proteins; Gelling properties; High intensity ultrasounds; Whey protein concentrate; Coagulation; Gelation; Hydrophobicity; Ultrasonic applications; Ultrasonics; Viscosity; Proteins; Glycine max
Año:2012
Volumen:108
Número:3
Página de inicio:463
Página de fin:472
DOI: http://dx.doi.org/10.1016/j.jfoodeng.2011.08.018
Título revista:Journal of Food Engineering
Título revista abreviado:J Food Eng
ISSN:02608774
CODEN:JFOED
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02608774_v108_n3_p463_Arzeni

Referencias:

  • (1980) Official Methods of Analysis of the Association of Official Analytical Chemists, , AOAC 13th ed. Washington, DC, USA
  • Bhaskaracharya, R., Kentish, S.E., Ashokkumar, M., Selected applications of ultrasonics in food processing (2009) Food Engineering Reviews, 1, pp. 31-49
  • Camino, N.A., Pérez, O.E., Pilosof, A.M.R., Molecular and functional modification of hydroxypropylmethylcellulose by high-intensity ultrasound (2009) Food Hydrocolloids, 23 (4), pp. 1089-1095
  • Carcel, J.A., Benedito, J., Bon, J., Mulet, A., High intensity ultrasound effects on meat brining (2007) Meat Science, 76 (4), pp. 611-619. , DOI 10.1016/j.meatsci.2007.01.022, PII S0309174007000381
  • Cayot, P., Lorient, D., Structure-function relationships of whey proteins (1997) Food Proteins and Their Applications, , M. Dekker, New York USA
  • Chandrapala, J., Zisu, B., Palmer, M., Kentish, S., Ashokkumar, M., Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate (2010) Ultrasonics Sonochemistry, 8 (5), pp. 951-957
  • Cheftel, J.C., Cuq, J.L., Lorient, D., (1989) Proteínas Alimentarias, , Ed Acribia España
  • Chen, R.H., Chang, J.R., Shyur, J.S., Effects of ultrasonic conditions and storage in acidic solutions on changes in molecular weight and polydispersity of treated chitosan (1997) Carbohydrate Research, 299 (4), pp. 287-294. , DOI 10.1016/S0008-6215(97)00019-0, PII S0008621597000190
  • Clark, A.H., Ross-Murphy, S., Structural and mechanical properties of biopolymer gels (1987) Biopolymers, 83, pp. 57-192. , Springer Berlin/Heidelberg
  • Clark, A.H., Judge, F.J., Richards, J.B., Stubbs, J.M., Sugget, A., Electron microscopy of network structures in thermally-induced globular protein gels (1981) Int. J. Peptide Protein Res., 17, pp. 380-392
  • Dumay, E.M., Kalichevsky, M.T., Cheftel, J.C., High-pressure unfolding and aggregation of β-lactoglobulin and the baroprotective effects of sucrose (1994) Journal of Agricultural and Food Chemistry, 42 (9), pp. 1861-1868
  • Egelandsdal, B., Fretheim, K., Harbitz, O., Dynamic rheological measurements on heat-induced myosin gels: An evaluation of the method's suitability for the filamentous gels (1986) Journal of the Science of Food and Agriculture, 37 (9), pp. 944-954
  • Ellman, G.L., Tissue sulfhydryl groups (1959) Archives of Biochemistry and Biophysics, 82 (1), pp. 70-77
  • Eschette, R., Norwood, D.P., Ultrasonic degradation of polysaccharides studied by multiangle laser light scattering (2003) RI-107 at the Annual March Meeting of the American Physical Society, , Austin, TX, USA
  • Fernandez-Diaz, M.D., Barsotti, L., Dumay, E., Cheftel, J.C., Effects of pulsed electric fields on ovalbumin solutions and dialyzed egg white (2000) Journal of Agricultural and Food Chemistry, 48 (6), pp. 2332-2339. , DOI 10.1021/jf9908796
  • Flosdorf, E.W., Chambers, L.A., The chemical action of audible sound (1933) Journal of the American Chemical Society, 55 (7), pp. 3051-3052
  • Furukawa, T., Ohta, S., Ultrasonic-induced modification of flow properties of soy protein dispersion (1983) Agricultural and Biological Chemistry, 47 (4), pp. 745-750
  • Gabriele, D., Migliori, M., Di Sanzo, R., Rossi, C.O., Ruffolo, S.A., De Cindio, B., Characterisation of dairy emulsions by NMR and rheological techniques (2009) Food Hydrocolloids, 23 (3), pp. 619-628
  • Gordon, L., Pilosof, A.M.R., Application of high intensity ultrasounds to control the size of whey proteins particles (2010) Food Biophysics, 5, pp. 203-210
  • Gulseren, I., Guzey, D., Bruce, B.D., Weiss, J., Structural and functional changes in ultrasonicated bovine serum albumin solutions (2007) Ultrasonics Sonochemistry, 14 (2), pp. 173-183. , DOI 10.1016/j.ultsonch.2005.07.006, PII S1350417706000678
  • Guzey, D., Gulseren, I., Bruce, B., Weiss, J., Interfacial properties and structural conformation of thermosonicated bovine serum albumin (2006) Food Hydrocolloids, 20 (5), pp. 669-677. , DOI 10.1016/j.foodhyd.2005.06.008, PII S0268005X05001311
  • Huang, X., Kakuda, Y., Cui, W., Hydrocolloids in emulsions: Particle size distribution and interfacial activity (2001) Food Hydrocolloids, 15 (4-6), pp. 533-542. , DOI 10.1016/S0268-005X(01)00091-1, PII S0268005X01000911
  • Iida, Y., Tuziuti, T., Yasui, K., Towata, A., Kozuka, T., Control of viscosity in starch and polysaccharide solutions with ultrasound after gelatinization (2008) Innovative Food Science & Emerging Technologies, 9 (2), pp. 140-146
  • Jambrak, A.R., Mason, T.J., Lelas, V., Herceg, Z., Herceg, I.L., Effect of ultrasound treatment on solubility and foaming properties of whey protein suspensions (2008) Journal of Food Engineering, 86 (2), pp. 281-287. , DOI 10.1016/j.jfoodeng.2007.10.004, PII S0260877407005195
  • Jambrak, A.R., Lelas, V., Mason, T.J., Krešić, G., Badanjak, M., Physical properties of ultrasound treated soy proteins (2009) Journal of Food Engineering, 93 (4), pp. 386-393
  • Jambrak, A.R., Mason, T.J., Lelas, V., Kresic, G., Ultrasonic effect on physicochemical and functional properties of α-lactalbumin (2010) LWT - Food Science and Technology, 43 (2), pp. 254-262
  • Kardos, N., Luche, J.-L., Sonochemistry of carbohydrate compounds (2001) Carbohydrate Research, 332 (2), pp. 115-131. , DOI 10.1016/S0008-6215(01)00081-7, PII S0008621501000817
  • Kato, A., Nakai, S., Hydrophobicity determined by a fluorescence probe method and its correlation with surface properties of proteins (1980) Biochimica et Biophysica Acta, 624 (1), pp. 13-20
  • Kentish, S., Ashokkumar, M., The physical and chemical effects of ultrasound (2011) Ultrasound Technologies for Food and Bioprocessing, pp. 1-12. , H. Feng, G.V. Barbosa-Cánovas, J. Weiss, Springer Science + Business Media New York
  • Kimura, T., Sakamoto, T., Leveque, J.-M., Sohmiya, H., Fujita, M., Ikeda, S., Ando, T., Standardization of ultrasonic power for sonochemical reaction (1996) Ultrasonics Sonochemistry, 3 (3), pp. 157-S161
  • Knorr, D., Zenker, M., Heinz, V., Lee, D.-U., Applications and potential of ultrasonics in food processing (2004) Trends in Food Science and Technology, 15 (5), pp. 261-266. , DOI 10.1016/j.tifs.2003.12.001, PII S0924224403003066
  • Krešić, G., Lelas, V., Jambrak, A.R., Herceg, Z., Brnčić, S.R., Influence of novel food processing technologies on the rheological and thermophysical properties of whey proteins (2008) Journal of Food Engineering, 87 (1), pp. 64-73
  • Leroux, J., Langendorff, V., Schick, G., Vaishnav, V., Mazoyer, J., Emulsion stabilizing properties of pectin (2003) Food Hydrocolloids, 17 (4), pp. 455-462
  • Liu, H., Bao, J., Du, Y., Zhou, X., Kennedy, J.F., Effect of ultrasonic treatment on the biochemphysical properties of chitosan (2006) Carbohydrate Polymers, 64 (4), pp. 553-559. , DOI 10.1016/j.carbpol.2005.11.007, PII S0144861705005424
  • Lorimer, J.P., Mason, T.J., Cuthbert, T.C., Brookfield, E.A., Effect of ultrasound on the degradation of aqueous native dextran (1995) Ultrasonics Sonochemistry, 2 (1), pp. 55-S57
  • Lu, Y., Riyanto, N., Weavers, L.K., Sonolysis of synthetic sediment particles: Particle characteristics affecting particle dissolution and size reduction (2002) Ultrasonics Sonochemistry, 9 (4), pp. 181-188. , DOI 10.1016/S1350-4177(02)00076-7, PII S1350417702000767
  • Martínez, K.D., Carrera Sánchez, C., Rodríguez Patino, J.M., Pilosof, A.M.R., Interfacial and foaming properties of soy protein and their hydrolysates (2009) Food Hydrocolloids, 23 (8), pp. 2149-2157
  • Mine, Y., Recent advances in the understanding of egg white protein functionality (1995) Trends in Food Science & Technology, 6 (7), pp. 225-232
  • Mishra, S., Mann, B., Joshi, V.K., Functional improvement of whey protein concentrate on interaction with pectin (2001) Food Hydrocolloids, 15 (1), pp. 9-15. , DOI 10.1016/S0268-005X(00)00043-6, PII S0268005X00000436
  • Nielsen, N.C., Structure of soy proteins (1985) New Protein Foods, 5, pp. 27-58. , H.L. Altschul, Academic Press New York
  • O'Donnell, C.P., Tiwari, B.K., Bourke, P., Cullen, P.J., Effect of ultrasonic processing on food enzymes of industrial importance (2010) Trends in Food Science & Technology, 21 (7), pp. 358-367
  • Paraskevopoulou, A., Kiosseoglou, V., Doxastakis, G., Kiosseoglou, V., Low-cholesterol yolk protein concentrate (2000) Developments in Food Science, 41, pp. 77-96. , Elsevier
  • Perez, O.E., Pilosof, A.M.R., Influence of pulsed electric field processing on the structure and gelation of egg white (2003) Food Colloids, Biopolymers and Biomaterials, pp. 119-132. , F.C.E. Dickinson, T.V. Vliet, RSC
  • Perez, O.E., Pilosof, A.M.R., Pulsed electric fields effects on the molecular structure and gelation of β-lactoglobulin concentrate and egg white (2004) Food Research International, 37 (1), pp. 102-110. , DOI 10.1016/j.foodres.2003.09.008
  • Petrier, C., Jeunet, A., Luche, J.L., Reverdy, G., Unexpected frequency effects on the rate of oxidative processes induced by ultrasound (1992) J. Am. Chem. Soc., 114, pp. 3148-3150
  • Raso, J., Mañas, P., Pagán, R., Sala, F.J., Influence of different factors on the output power transferred into medium by ultrasound (1999) Ultrasonics Sonochemistry, 5 (4), pp. 157-162
  • Ratoarinoro, N., Contamine, F., Wilhelm, A.M., Berlan, J., Delmas, H., Power measurement in sonochemistry (1995) Ultrasonics Sonochemistry, 2 (1), pp. 43-S47
  • Relkin, P., Meylheuc, T., Launay, B., Raynal, K., Heat-induced gelation of globular protein mixtures. A DSC and scanning electron microscopic study (1998) Journal of Thermal Analysis and Calorimetry, 51 (3), pp. 747-755
  • Riener, J., Noci, F., Cronin, D.A., Morgan, D.J., Lyng, J.G., Characterisation of volatile compounds generated in milk by high intensity ultrasound (2009) International Dairy Journal, 19 (4), pp. 269-272
  • Shimada, K., Cheftel, J.C., Determination of sulfhydryl groups and disulfide bonds in heat-induced gels of soy protein isolate (1988) Journal of Agricultural and Food Chemistry, 36 (1), pp. 147-153
  • Stading, M., Hermansson, A.M., Viscoelastic behaviour of [beta]-lactoglobulin gel structures (1990) Food Hydrocolloids, 4 (2), pp. 121-135
  • Sun, X.D., Arntfield, S.D., Gelation properties of salt-extracted pea protein induced by heat treatment (2010) Food Research International, 43 (2), pp. 509-515
  • Taylor, M.J., Richardson, T., Antioxidant activity of skim milk: Effect of sonication (1980) Journal of Dairy Science, 63 (11), pp. 1938-1942
  • Vohra, P., Kratzer, F.H., Evaluation of soybean meal determines adequacy of heat treatment (1991) Feedstuffs, pp. 22-28
  • Weiss, J., Kristbergsson, K., Kjartansson, G.T., Engineering food ingredients with high-intensity ultrasound (2011) Ultrasound Technologies for Food and Bioprocessing, pp. 239-285. , H. Feng, G.V. Barbosa-Cánovas, J. Weiss, Springer Science+Business Media New York
  • Zisu, B., Bhaskaracharya, R., Kentish, S., Ashokkumar, M., Ultrasonic processing of dairy systems in large scale reactors (2010) Ultrasonics Sonochemistry, 17 (6), pp. 1075-1081

Citas:

---------- APA ----------
Arzeni, C., Martínez, K., Zema, P., Arias, A., Pérez, O.E. & Pilosof, A.M.R. (2012) . Comparative study of high intensity ultrasound effects on food proteins functionality. Journal of Food Engineering, 108(3), 463-472.
http://dx.doi.org/10.1016/j.jfoodeng.2011.08.018
---------- CHICAGO ----------
Arzeni, C., Martínez, K., Zema, P., Arias, A., Pérez, O.E., Pilosof, A.M.R. "Comparative study of high intensity ultrasound effects on food proteins functionality" . Journal of Food Engineering 108, no. 3 (2012) : 463-472.
http://dx.doi.org/10.1016/j.jfoodeng.2011.08.018
---------- MLA ----------
Arzeni, C., Martínez, K., Zema, P., Arias, A., Pérez, O.E., Pilosof, A.M.R. "Comparative study of high intensity ultrasound effects on food proteins functionality" . Journal of Food Engineering, vol. 108, no. 3, 2012, pp. 463-472.
http://dx.doi.org/10.1016/j.jfoodeng.2011.08.018
---------- VANCOUVER ----------
Arzeni, C., Martínez, K., Zema, P., Arias, A., Pérez, O.E., Pilosof, A.M.R. Comparative study of high intensity ultrasound effects on food proteins functionality. J Food Eng. 2012;108(3):463-472.
http://dx.doi.org/10.1016/j.jfoodeng.2011.08.018