Artículo

Manova, D.; Arias, L.F.; Hofele, A.; Alani, I.; Kleiman, A.; Asenova, I.; Decker, U.; Marquez, A.; Mändl, S."Nitrogen incorporation during PVD deposition of TiO2:N thin films" (2017) Surface and Coatings Technology. 312:61-65
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

TiO2:N is known for its photoactivity upon illumination with visible light. Using filtered arc with energetic particle fluxes, deposition near room temperature on sensitive substrates, e.g. polymers should be possible. However, addition of nitrogen gas flux during deposition results in very small nitrogen contents. Incorporation of nitrogen up to 5–7.5 at.% for either cathodic arc deposition or plasma based ion implantation and deposition leads to a reduction of the band gap down to 2.7 eV before the films become semimetallic. However, only deposition at a temperature of 200 °C allows avoiding the early formation of defects within the band gap. The nitrogen content was determined using secondary ion mass spectroscopy (SIMS) and calibrated with nitrogen implanted TiO2 samples using conventional beamline implantation. The results show that the nitrogen/oxygen flow ratio in two completely different deposition systems is a reliable indicator of the physical properties. © 2016 Elsevier B.V.

Registro:

Documento: Artículo
Título:Nitrogen incorporation during PVD deposition of TiO2:N thin films
Autor:Manova, D.; Arias, L.F.; Hofele, A.; Alani, I.; Kleiman, A.; Asenova, I.; Decker, U.; Marquez, A.; Mändl, S.
Filiación:Leibniz-Institut für Oberflächenmodifizierung, Permoserstr. 15, Leipzig, 04318, Germany
Instituto de Física del Plasma, CONICET and Departamento de Física, FCEN, Universidad de Buenos Aires, Cdad. Universitaria Pab. 1, Buenos Aires, 1428, Argentina
Faculty of Physics, Sofia University “St. Kliment Ohridski”, 5 James Bourchier Blvd, Sofia, 1164, Bulgaria
Palabras clave:Band gap engineering; PVD; Tauc plot; TiO2; Energy gap; Ion implantation; Nitrogen; Physical vapor deposition; Secondary ion mass spectrometry; Titanium dioxide; Band gap engineering; Cathodic arc deposition; Energetic particle flux; Nitrogen incorporation; Plasma based ion implantation and deposition; Secondary ion mass spectroscopies (SIMS); Tauc plots; TiO2; Nitrogen plasma
Año:2017
Volumen:312
Página de inicio:61
Página de fin:65
DOI: http://dx.doi.org/10.1016/j.surfcoat.2016.08.085
Handle:http://hdl.handle.net/20.500.12110/paper_02578972_v312_n_p61_Manova
Título revista:Surface and Coatings Technology
Título revista abreviado:Surf. Coat. Technol.
ISSN:02578972
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02578972_v312_n_p61_Manova

Referencias:

  • Hofmeister, W., Tillmanns, E., Bauer, W.H., Refinement of barium tetratitanate, BaTi4O9, and hexabarium 17-titanate, Ba6Ti17O40 (1984) Acta Crystallogr. C, 40, pp. 1510-1512
  • Fujishima, A., Honda, K., Electrochemical photolysis of water at a semiconductor electrode (1972) Nature, 238, pp. 37-38
  • Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M., Watanabe, T., Light-induced amphiphilic surfaces (1997) Nature, 388, pp. 431-432
  • Löbl, P., Huppertz, M., Mergel, D., Nucleation and growth in TiO2 films prepared by sputtering and evaporation (1994) Thin Solid Films, 251, pp. 72-79
  • Fischer, K., Kühnert, M., Gläser, R., Schulze, A., Photocatalytic degradation and toxicity evaluation of diclofenac by nanotubular titanium dioxide–PES membrane in a static and continuous setup (2015) RSC Adv., 5, pp. 16340-16348
  • Schneider, J.M., Rohde, S., Sproul, W.D., Matthews, A., Recent developments in plasma assisted physical vapour deposition (2000) J. Phys. D. Appl. Phys., 33, pp. R173-R186
  • Manova, D., Gjevori, A., Haberkorn, F., Lutz, J., Dimitrov, S., Gerlach, J.W., Valcheva, E., Mändl, S., Formation of hydrophilic and photocatalytically active TiO2 thin films by plasma based ion implantation and deposition (2009) Phys. Status Solidi A, 206, pp. 71-77
  • Morikawa, T., Asahi, R., Ohwaki, T., Aoki, K., Taga, Y., Band-gap narrowing of titanium dioxide by nitrogen doping (2001) Jpn. J. Appl. Phys., 40, pp. L561-L563
  • Lee, D.H., Cho, Y.S., Yi, W.I., Kim, T.S., Lee, J.K., Jin Jung, H., Metalorganic chemical vapor deposition of TiO2:N anatase thin film on Si substrate (1995) Appl. Phys. Lett., 66, pp. 815-816
  • Asenova, I., Manova, D., Mändl, S., Incorporation of nitrogen into TiO2 thin films during PVD processes (2014) J. Phys. Conf. Ser., 559
  • Choudhury, B., Bayan, S., Choudhury, A., Chakraborty, P., Narrowing of band gap and effective charge carrier separation in oxygen deficient TiO2 nanotubes with improved visible light photocatalytic activity (2016) J. Colloid Interface Sci., 465, pp. 1-10
  • Abu Bakar, S., Byzynski, G., Ribeiro, C., Synergistic effect on the photocatalytic activity of N-doped TiO2 nanorods synthesised by novel route with exposed (110) facet (2016) J. Alloys Compd., 666, pp. 38-49
  • Pan, J., Jiang, S.P., Synthesis of nitrogen doped faceted titanium dioxide in pure brookite phase with enhanced visible light photoactivity (2016) J. Colloid Interface Sci., 469, pp. 25-30
  • Márquez, A., Blanco, G., Fernandez de Rap, M.E., Lamas, D.G., Tarulla, R., Properties of cupric oxide coatings prepared by cathodic arc deposition (2004) Surf. Coat. Technol., 187, pp. 154-160
  • Thorwarth, G., Mändl, S., Rauschenbach, B., Plasma immersion ion implantation using titanium and oxygen ions (2000) Surf. Coat. Technol., 128 (129), pp. 116-120
  • Gjevori, A., Gerlach, J.W., Manova, D., Assmann, W., Valcheva, E., Mändl, S., Influence of auxiliary plasma source and ion bombardment on growth of TiO2 thin films (2011) Surf. Coat. Technol., 205, pp. S232-S234
  • Gjevori, A., Nonnenmacher, K., Ziberi, B., Hirsch, D., Gerlach, J.W., Höche, T., Manova, D., Mändl, S., Investigation of nucleation and phase formation of photocatalytically active TiO2 films by MePBIID (2009) Nucl. Instrum. Methods; B, 267, pp. 1658-1661
  • Soriano, L., Abbate, M., Vogel, J., Fuggle, J.C., Fernández, A., González-Elipe, A.R., Sacchi, M., Sanz, J.M., Chemical changes induced by sputtering in TiO2 and some selected titanates as observed by X-ray absorption spectroscopy (1993) Surf. Sci., 290, p. 427
  • Tauc, J., Absorption edge and internal electric fields in amorphous semiconductors (1970) Mater. Res. Bull., 5, pp. 721-730
  • Davis, E.A., Mott, N.F., Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors (1970) Philos. Mag., 22, pp. 903-922
  • Huber, P., Manova, D., Mändl, S., Rauschenbach, B., Optical characterization of TiN produced by metal-plasma immersion ion implantation (2001) Surf. Coat. Technol., 142 (144), pp. 418-423
  • Ziegler, J.F., Ziegler, M.D., Biersack, J.P., SRIM - the stopping and range of ions in matter (2010) Nucl. Instrum. Methods B, 268, pp. 1818-1823
  • Heinrich, S., Schirmer, S., Hirsch, D., Gerlach, J.W., Manova, D., Assmann, W., Mändl, S., Comparison of ZrN and TiN formed by plasma based ion implantation & deposition (2008) Surf. Coat. Technol., 202, pp. 2310-2313
  • Nakajima, K., Fujiyoshi, A., Ming, Z., Suzuki, M., Kimura, K., In situ observation of oxygen gettering by titanium overlayer on HfO2 ∕ SiO2 ∕ Si, using high-resolution Rutherford backscattering spectroscopy (2007) J. Appl. Phys., 102, p. 064507
  • Anders, A., Ion charge state distributions of vacuum arc plasmas: the origin of species (1997) Phys. Rev. E, 55, pp. 969-981
  • Di Valentin, C., Trends in non-metal doping of anatase TiO2: B, C, N and F (2013) Catal. Today, 206, pp. 12-18
  • Yang, L., Zhou, H., Fan, T., Zhang, D., Semiconductor photocatalysts for water oxidation: current status and challenges (2014) Phys. Chem. Chem. Phys., 16, pp. 6810-6826
  • Anders, A., A structure zone diagram including plasma-based deposition and ion etching (2010) Thin Solid Films, 518, pp. 4087-4090

Citas:

---------- APA ----------
Manova, D., Arias, L.F., Hofele, A., Alani, I., Kleiman, A., Asenova, I., Decker, U.,..., Mändl, S. (2017) . Nitrogen incorporation during PVD deposition of TiO2:N thin films. Surface and Coatings Technology, 312, 61-65.
http://dx.doi.org/10.1016/j.surfcoat.2016.08.085
---------- CHICAGO ----------
Manova, D., Arias, L.F., Hofele, A., Alani, I., Kleiman, A., Asenova, I., et al. "Nitrogen incorporation during PVD deposition of TiO2:N thin films" . Surface and Coatings Technology 312 (2017) : 61-65.
http://dx.doi.org/10.1016/j.surfcoat.2016.08.085
---------- MLA ----------
Manova, D., Arias, L.F., Hofele, A., Alani, I., Kleiman, A., Asenova, I., et al. "Nitrogen incorporation during PVD deposition of TiO2:N thin films" . Surface and Coatings Technology, vol. 312, 2017, pp. 61-65.
http://dx.doi.org/10.1016/j.surfcoat.2016.08.085
---------- VANCOUVER ----------
Manova, D., Arias, L.F., Hofele, A., Alani, I., Kleiman, A., Asenova, I., et al. Nitrogen incorporation during PVD deposition of TiO2:N thin films. Surf. Coat. Technol. 2017;312:61-65.
http://dx.doi.org/10.1016/j.surfcoat.2016.08.085