Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The magnetosphere structure of a magnetar is considered in the context of a theory of gravity with dynamical torsion field beyond the standard General Relativity (GR). To this end, the axially symmetric version of the Grad-Shafranov equation (GSE) is obtained in this theoretical framework. The resulting GSE solution in the case of the magnetosphere corresponds to a stream function containing also a pseudoscalar part. This function solution under axisymmetry presents a complex character that (as in the quantum field theoretical case) could be associated with an axidilaton field. Magnetar-pulsar mechanism is suggested and the conjecture about the origin of the excess energy due the GSE describing the magnetosphere dynamics is claimed. We also show that two main parameters of the electrodynamic processes (as described in GR framework by Goldreich and Julian (GJ) [Astrophys. J. 157 (1969) 869]) are modified but the electron-positron pair rate remains invariant. The possible application of our generalized equation (defined in a non-Riemannian geometry) to astrophysical scenarios involving emission of energy by gravitational waves, as described in the context of GR in [S. Capozziello, M. De Laurentis, I. De Martino, M. Formisano and D. Vernieri, Astrophys. Space Sci. 333 (2011) 29-35], is briefly discussed. © 2019 World Scientific Publishing Company.

Registro:

Documento: Artículo
Título:Non-Riemmanian geometry, force-free magnetospheres and the generalized Grad-Shafranov equation
Autor:Cirilo-Lombardo, D.J.
Filiación:Instituto de Fisica Del Plasma (INFIP), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, 141980, Russian Federation
Palabras clave:Grad-Shafranov equation; Magnetar model; Magnetosphere dynamics; Non-Riemannian geometry
Año:2019
Volumen:16
Número:1
DOI: http://dx.doi.org/10.1142/S0219887819500130
Título revista:International Journal of Geometric Methods in Modern Physics
Título revista abreviado:Int. J. Geom. Methods Mod. Phys.
ISSN:02198878
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02198878_v16_n1_p_CiriloLombardo

Referencias:

  • Shafranov, V.D., (1958) Sov. Phys. JETP, 6, p. 545
  • Grad, H., Rubin, H., (1958) Proc. Second United Nations Conf. Peaceful Uses of Atomic Energy, 21, p. 190. , United Nations, Geneva
  • Solov'Ev, L.S., (1968) Sov. Phys. JETP, 26, p. 400
  • Zakharov, L.E., Shafranov, V.D., (1986) Reviews of Plasma Physics, 11, p. 153. , Consultants Bureau, New York
  • Goldreich, P., Julian, W.H., (1969) Astrophys. J., 157, p. 869
  • Lovelace, R.V.E., Mehanian, C., Mobarry, C.M., Sulkanen, M.E., (1986) Astrophys. J. Suppl., 62, pp. 1-37
  • Macdonald, D.A., Thorne, K.S., (1982) Mon. Not. R. Astron. Soc., 198, p. 345
  • Okamoto, I., (1975) Mon. Not. R. Astron. Soc., 173, p. 357
  • Cirilo-Lombardo, D.J., (2017) Phys. Part. Nucl. Lett., 14 (6), pp. 799-810
  • Cirilo-Lombardo, D.J., (2017) J. High Energy Phys., 16, pp. 1-14
  • Cirilo-Lombardo, D.J., (2017) Int. J. Geom. Methods Mod. Phys., 14 (7), p. 1750108
  • Alvarez-Castillo, D., Cirilo-Lombardo, D.J., Zamora-Saa, J., (2017) J. High Energy Phys., 13-14, pp. 10-16
  • Yokoi, N., Cross helicity and related dynamo (2013) Geophys. Astrophys. Fluid Dyn., 107 (1-2), pp. 114-184
  • Cirilo-Lombardo, D.J., (2013) Astropart. Phys., 50-52, pp. 51-56
  • Lyutikov, M., Pariev, V.I., Blandford, R., (2003) Astrophys. J., 597, pp. 998-1009
  • Beloborodov, A.M., Thompson, C., (2007) Astrophys. J., 657, p. 967
  • Aly, J.J., (1984) Astrophys. J., 283, p. 349
  • Aly, J.J., (1991) Astrophys. J., 375, p. L61
  • Capozziello, S., De Laurentis, M., De Martino, I., Formisano, M., Vernieri, D., (2011) Astrophys. Space Sci., 333, pp. 29-35

Citas:

---------- APA ----------
(2019) . Non-Riemmanian geometry, force-free magnetospheres and the generalized Grad-Shafranov equation. International Journal of Geometric Methods in Modern Physics, 16(1).
http://dx.doi.org/10.1142/S0219887819500130
---------- CHICAGO ----------
Cirilo-Lombardo, D.J. "Non-Riemmanian geometry, force-free magnetospheres and the generalized Grad-Shafranov equation" . International Journal of Geometric Methods in Modern Physics 16, no. 1 (2019).
http://dx.doi.org/10.1142/S0219887819500130
---------- MLA ----------
Cirilo-Lombardo, D.J. "Non-Riemmanian geometry, force-free magnetospheres and the generalized Grad-Shafranov equation" . International Journal of Geometric Methods in Modern Physics, vol. 16, no. 1, 2019.
http://dx.doi.org/10.1142/S0219887819500130
---------- VANCOUVER ----------
Cirilo-Lombardo, D.J. Non-Riemmanian geometry, force-free magnetospheres and the generalized Grad-Shafranov equation. Int. J. Geom. Methods Mod. Phys. 2019;16(1).
http://dx.doi.org/10.1142/S0219887819500130