Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The propagation of a laser beam through turbulent media is modeled as a fractional Brownian motion (fBm). Time series corresponding to the center position of the laser spot (coordinates x and y) after traveling across air in turbulent motion, with different strength, are analyzed by the wavelet theory. Two quantifiers are calculated, the Hurst exponent, H, and the mean Normalized Total Wavelet Entropy, S̃WT. It is verified that both quantifiers give complementary information about the turbulence.

Registro:

Documento: Artículo
Título:Characterization of laser propagation through turbulent media by quantifiers based on the wavelet transform
Autor:Zunino, L.; Pérez, D.G.; Garavaglia, M.; Rosso, O.A.
Filiación:Departamento de Física, Facultad de Ciencias Exactas, Ctr. de Invest. Óptics, CC. 124 Correo Central, 1900 La Plata, Buenos Aires, Argentina
Instituto de Cálculo, Fac. de Ciencias Exactas y Naturales, Ciudad Universitaria, 1428 Ciudad de Buenas Aires, Argentina
Palabras clave:Fractional Brownian Motion; Hurst Exponent; Laser Propagation; Signal Entropy; Time-Frequency Signal Analysis; Turbulence; Wavelet Analysis; Characterization; Entropy; Fractals; Time series analysis; Turbulent flow; Wavelet transforms; Fractional brownian motion; Hurst exponent; Laser propagation; Signal entropy; Time-frquency signal analysis; Wavelet analysis; Lasers
Año:2004
Volumen:12
Número:2
Página de inicio:223
Página de fin:233
DOI: http://dx.doi.org/10.1142/S0218348X04002471
Título revista:Fractals
Título revista abreviado:Fractals
ISSN:0218348X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0218348X_v12_n2_p223_Zunino

Referencias:

  • Aubert, H., Jaggard, D.L., Fractal superlattices and their wavelet analyses (1998) Opt. Commun., 149, pp. 207-212
  • Degaudenzi, M.E., Arizmendi, C.M., Wavelet-based fractal analysis of electrical power demand (2000) Fractals, 8 (3), pp. 239-245
  • Frantziskonis, G., Hansen, A., Wavelet-based multiscaling in self-affine random media (2000) Fractals, 8 (4), pp. 403-411
  • Mandelbrot, B.B., Intermittent turbulence in self-similar cascades: Divergence of high moments and dimension of the carrier (1974) J. Fluid Mech., 62, pp. 331-358
  • Mandelbrot, B.B., On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars (1975) J. Fluid Mech., 72, pp. 401-416
  • Sreenivasan, K., Meneveau, C., The fractal facets of turbulence (1986) J. Fluid Mech., 173, pp. 357-386
  • Meneveau, C., Sreenivasan, K., The multifractal nature of the turbulent energy dissipation (1991) J. Fluid Mech., 224, pp. 429-484
  • Scotti, A., Meneveau, C., Saddoughi, S., Fractal dimension of velocity signals in high-Reynoldsnumber hydrodynamic turbulence (1995) Phys. Rev., E51 (6), pp. 5594-5608
  • Hudgins, L., Friehe, C., Mayer, M., Wavelet transforms and atmospheric turbulence (1993) Phys. Rev. Lett., 71 (20), pp. 3279-3282
  • Qian, M., Liu, S., Scale exponents of atmospheric turbulence under different stratifications (1996) Fractals, 4 (1), pp. 45-48
  • Katul, G., Vidakovic, B., Albertson, J., Estimating global and local scaling exponents in turbulent flows using wavelet transformations (2001) Phys. Fluids, 13, pp. 241-250
  • Papanicolaou, G., Sølna, K., Wavelet based estimation of local Kolmogorov turbulence (2002) Long-range Dependence: Theory and Applications, pp. 473-505. , eds. P. Doukhan, G. Oppenheim and M. S. Taqqu (Birkhauser)
  • Mandelbrot, B.B., Van Ness, J., Fractional Brownian motion, fractional noises and applications (1968) SIAM Rev., 10 (4), pp. 422-437
  • Hurst, H., Long-term storage capacity of reservoirs (1951) Trans. Am. Soc. Civil Eng., 116, pp. 770-808
  • Pérez, D.G., (2003) Propagación de Luz en Medios Turbulentos, , http://arxiv.org/abs/physics/0307144, (in Spanish), Tesis de la Univer sidad Nacional de La Plata, Argentina
  • Lévy-Vehel, J., (2001) FracLab: A Fractal Analysis Tool-box for Signal and Image Processing, , http://fractales.inria.fr/
  • Feder, J., (1988) Fractals, pp. 170-171. , Plenum Press, New York
  • Helland, K., Van Atta, C.W., The "Hurst phenomenon" in grid turbulence (1978) J. Fluid Mech., 85, pp. 573-589
  • Gabor, D., Theory of communication (1946) J. IEEE (London), 93, pp. 429-457
  • Daubechies, I., (1992) Ten Lectures on Wavelets, , SIAM, Philadelphia
  • Aldroubi, A., Unser, M., (1996) Wavelets in Medicine and Biology, , CRC Press, Boca Raton
  • Mallat, S., (1999) A Wavelet Tour of Signal Processing, 2nd Edn., , Academic Press, San Diego
  • Samar, V., Bopardikar, A., Rao, R., Swartz, K., Wavelet analysis of neuroelectric waveforms: A conceptual tutorial (1999) Brain Lang., 66, pp. 7-60
  • Thévenaz, P., Blue, T., Unser, M., Interpolation revisited (2000) IEEE Trans. Med. Imaging, 19, pp. 739-758
  • Unser, M., Spline: A perfect fit for signal and image processing (1999) IEEE Signal Process. Mag., 16, pp. 22-38
  • Shannon, C.E., A mathematical theory of communication (1948) Bell Syst. Technol. J., 27, pp. 379-423
  • Blanco, S., Figliola, A., Quiroga, R.Q., Rosso, O.A., Serrano, E., Time-frequency analysis of electroencephalogram series (III): Wavelet packets and information cost function (1998) Phys. Rev., E57, pp. 932-940
  • Rosso, O.A., Blanco, S., Yordanova, J., Kolev, V., Figliola, A., Schürmann, M., Başar, E., Wavelet entropy: A new tool for analysis of short duration brain electrical signals (2001) J. Neurosci. Meth., 105, pp. 65-75
  • Rosso, O.A., Mairal, M.L., Characterization of time dynamical evolution of electroencephalographic epileptic records (2002) Physica, A312, pp. 469-504
  • Peréz, A., D'Attellis, C.E., Rapacioli, M., Hirchoren, G.A., Flores, V., Analyzing blood cell concentration as a stochastic process (2001) IEEE Eng. Med. Biol., (NOVEMBER-DECEMBER), pp. 170-175
  • Flandrin, P., On the spectrum of fractional Brownian motions (1989) IEEE Trans. Inf. Theory, IT-35 (1), pp. 197-199
  • Flandrin, P., Wavelet analysis and synthesis of fractional Brownian motion (1992) IEEE Trans. Inf. Theory, IT-38 (2), pp. 910-917
  • Beran, J., (1994) Statistics for Long-memory Processes, pp. 81-120. , Chapman and Hall, New York
  • Taqqu, M., Teverovsky, V., Willinger, W., Estimators for long-range dependence: An empirical study (1995) Fractals, 3 (4), pp. 785-798
  • Consortini, A., Sun, Y.Y., Li, Z.P., Conforti, G., A mixed method for measuring the inner scale of atmospheric turbulence (1990) J. Mod. Opt., 37 (10), pp. 1555-1560
  • Consortini, A., O'Donnell, K., Beam wandering of thin parallel beams through atmospheric turbulence (1991) Waves Random Media, 3, pp. S11-S28
  • Peltier, R.F., Lévy-Vehel, J., (1995) Multifractional Brownian Motion: Definition and Preliminary Results, , Research Report No. RR-2645, INRIA

Citas:

---------- APA ----------
Zunino, L., Pérez, D.G., Garavaglia, M. & Rosso, O.A. (2004) . Characterization of laser propagation through turbulent media by quantifiers based on the wavelet transform. Fractals, 12(2), 223-233.
http://dx.doi.org/10.1142/S0218348X04002471
---------- CHICAGO ----------
Zunino, L., Pérez, D.G., Garavaglia, M., Rosso, O.A. "Characterization of laser propagation through turbulent media by quantifiers based on the wavelet transform" . Fractals 12, no. 2 (2004) : 223-233.
http://dx.doi.org/10.1142/S0218348X04002471
---------- MLA ----------
Zunino, L., Pérez, D.G., Garavaglia, M., Rosso, O.A. "Characterization of laser propagation through turbulent media by quantifiers based on the wavelet transform" . Fractals, vol. 12, no. 2, 2004, pp. 223-233.
http://dx.doi.org/10.1142/S0218348X04002471
---------- VANCOUVER ----------
Zunino, L., Pérez, D.G., Garavaglia, M., Rosso, O.A. Characterization of laser propagation through turbulent media by quantifiers based on the wavelet transform. Fractals. 2004;12(2):223-233.
http://dx.doi.org/10.1142/S0218348X04002471