Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The existence of weak solutions locally in time to the quantum hydrodynamic equations in bounded domains is shown. These Madelung-type equations consist of the Euler equations, including the quantum Bohm potential term, for the particle density and the particle current density and are coupled to the Poisson equation for the electrostatic potential. This model has been used in the modeling of quantum semiconductors and superfluids. The proof of the existence result is based on a formulation of the problem as a nonlinear Schrödinger-Poisson system and uses semigroup theory and fixed-point techniques.

Registro:

Documento: Artículo
Título:Local existence of solutions to the transient quantum hydrodynamic equations
Autor:Jüngel, A.; Mariani, M.C.; Rial, D.
Filiación:Fachbereich Mathematik und Statistik, Universität Konstanz, Fach D193, 78457 Konstanz, Germany
Departamento de Matemática, FCEyN, Ciudad Universitaria, Nuñez-Pab I, 1428 Buenos Aires, Argentina
Año:2002
Volumen:12
Número:4
Página de inicio:485
Página de fin:495
DOI: http://dx.doi.org/10.1142/S0218202502001751
Título revista:Mathematical Models and Methods in Applied Sciences
Título revista abreviado:Math. Models Methods Appl. Sci.
ISSN:02182025
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_02182025_v12_n4_p485_Jungel

Referencias:

  • Cazenave, T., An introduction to nonlinear schrödinger equations (1996) Textos de Métodos Matemáticos, 26. , Universidade Federal do Rio de Janeiro, 3rd edition
  • Gamba, I., Jüngel, A., Asymptotic limits in quantum trajectory models Commun. Part. Differential Equations
  • Gamba, I., Jüngel, A., Positive solutions to singular second and third order differential equations for quantum fluids (2001) Arch. Rational Mech. Anal., 156, pp. 183-203
  • Gardner, C., Numerical simulation of a steady-state electron shock wave in a submicron semiconductor device (1991) IEEE Trans. El. Dev., 38, pp. 392-398
  • Gardner, C., The quantum hydrodynamic model for semiconductor devices (1994) SIAM J. Appl. Math., 54, pp. 409-427
  • Gardner, C., Jerome, J., Rose, D., Numerical methods for the hydrodynamic device model: Subsonic flow (1989) IEEE Trans. CAD, 8, pp. 501-507
  • Gasser, I., A note on traveling wave solutions for a quantum hydrodynamic model (2001) Appl. Math. Left., 14, pp. 279-283
  • Gasser, I., Markowich, P.A., Quantum hydrodynamics, Wigner transforms and the classical limit (1997) Asymptotic Anal., 14, pp. 97-116
  • Gasser, I., Markowich, P.A., Ringhofer, C., Closure conditions for classical and quantum moment hierarchies in the small temperature limit (1996) Transport Theory Stat. Phys., 25, pp. 409-423
  • Gilbarg, D., Trudinger, N.S., (1983) Elliptic Partial Differential Equations of Second Order, , Springer, 2nd edition
  • Gyi, M.T., Jüngel, A., A quantum regularization of the one-dimensional hydrodynamic model for semiconductors (2000) Adv. Differential Equations, 5, pp. 773-800
  • Jüngel, A., A steady-state quantum euler-poisson system for potential flows (1998) Comm. Math. Phys., 194, pp. 463-479
  • Jüngel, A., Nonlinear problems in quantum semiconductor modeling (2001) Nonlinear Anal TMA, 47, pp. 5873-5884
  • Jüngel, A., Quasi-hydrodynamic semiconductor equations (2001) Progress in Nonlinear Differential Equations and Its Applications, , Birkhäuser
  • Landau, L., Lifschitz, E., (1985) Lehrbuch der theoretischen physik, Vol. III, Quantenmechanik, 3. , Akademie-Verlag
  • Loffredo, M., Morato, L., On the creation of quantum vortex lines in rotating Hell (1993) IL Nouvo Cimento, 108 B, pp. 205-215
  • Madelung, E., Quantentheorie in hydrodynamischer Form (1927) Z. Phys., 40, p. 322
  • Markowich, P.A., Ringhofer, C.A., Schmeiser, C., (1990) Semiconductor Equations, , Springer
  • Pazy, A., (1992) Semigroups of Linear Operators and Applications to Partial Differential Equations, , Springer
  • Pietra, P., Pohl, C., Weak limits of the quantum hydrodynamic model, VLSI design (1999) Proc. of the Workshop on Quantum Kinetic Theory, 9, pp. 427-434
  • Zhang, B., Jerome, J., On a steady-state quantum hydrodynamic model for semiconductors (1996) Nonlinear Anal. TMA, 26, pp. 845-856

Citas:

---------- APA ----------
Jüngel, A., Mariani, M.C. & Rial, D. (2002) . Local existence of solutions to the transient quantum hydrodynamic equations. Mathematical Models and Methods in Applied Sciences, 12(4), 485-495.
http://dx.doi.org/10.1142/S0218202502001751
---------- CHICAGO ----------
Jüngel, A., Mariani, M.C., Rial, D. "Local existence of solutions to the transient quantum hydrodynamic equations" . Mathematical Models and Methods in Applied Sciences 12, no. 4 (2002) : 485-495.
http://dx.doi.org/10.1142/S0218202502001751
---------- MLA ----------
Jüngel, A., Mariani, M.C., Rial, D. "Local existence of solutions to the transient quantum hydrodynamic equations" . Mathematical Models and Methods in Applied Sciences, vol. 12, no. 4, 2002, pp. 485-495.
http://dx.doi.org/10.1142/S0218202502001751
---------- VANCOUVER ----------
Jüngel, A., Mariani, M.C., Rial, D. Local existence of solutions to the transient quantum hydrodynamic equations. Math. Models Methods Appl. Sci. 2002;12(4):485-495.
http://dx.doi.org/10.1142/S0218202502001751