Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We previously found that prenatal hypoxia induces a significant increase in the levels of active Caspase 3 at 60 min post-hypoxia (p-h) and in the number of TUNEL-positive pyknotic cells, which peaks at 6 h p-h. The aim of this work was to study alterations in MAPKs pathways and the effect of specific inhibitors of the JNK (SP600125) and p38 (SB203580) pathways following acute hypoxia in chick optic lobe at embryonic day (ED) 12. To this end, JNK, p38 and ERK1-2 protein kinase expression levels were determined by Western blot in both their active and inactive forms, evaluated at successive p-h times. At 10 and 30 min p-h the P-JNK/JNK ratio was 1.912 ± 0.341 and 1.920 ± 0.304, respectively. Concomitantly, at 0 min p-h the P-p38/p38 ratio was 1.657 ± 0.203. Lastly, the P-ERK/ERK ratio proving non-significant throughout. When inhibitors for JNK and p38 were used, we observed a decrease in the values of active Caspase 3 at 60 min p-h, which correlated with the control values in the parameters of TUNEL-positive cells at 6 h p-h. Analysis for P-ATF-2 demonstrated an increase in hypoxic embryos compared to control ones which was reverted in a dose-dependent manner with the use of both inhibitors. All these results indicate that at ED 12, acute hypoxia might be differentially activating JNK and p38 pathways, without affecting the ERK pathway, which in turn would be activating Caspase 3, thus leading to cell death by apoptosis. Furthermore, JNK and p38 activation precede in time the programmed cell death induced by hypoxia. © 2007 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Programmed cell death and differential JNK, p38 and ERK response in a prenatal acute hypoxic hypoxia model
Autor:Vacotto, M.; Coso, O.; Fiszer de Plazas, S.
Filiación:Instituto de Biología Celular y Neurociencias, Prof. E. De Robertis, Facultad de Medicina, Paraguay 2155, 1121 Buenos Aires, Argentina
Laboratorio de Fisiologia y Biologia Molecular, FCEyN, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Palabras clave:Chick optic lobe; CNS development; Hypoxia; MAPKs; Programmed cell death; 4 (4 fluorophenyl) 2 (4 methylsulfinylphenyl) 5 (4 pyridyl)imidazole; anthra[1,9 cd]pyrazol 6(2h) one; caspase 3; mitogen activated protein kinase 1; mitogen activated protein kinase 3; mitogen activated protein kinase p38; stress activated protein kinase; acute disease; animal cell; apoptosis; article; brain development; brain hypoxia; cell differentiation; controlled study; dose response; drug inhibition; embryo development; nick end labeling; nonhuman; optic lobe; prenatal period; priority journal; protein expression; Western blotting; Animals; Apoptosis; Blotting, Western; Caspase 3; Chick Embryo; Dose-Response Relationship, Drug; Enzyme Inhibitors; Extracellular Signal-Regulated MAP Kinases; Fetal Hypoxia; In Situ Nick-End Labeling; JNK Mitogen-Activated Protein Kinases; p38 Mitogen-Activated Protein Kinases; Signal Transduction
Año:2008
Volumen:52
Número:4-5
Página de inicio:857
Página de fin:863
DOI: http://dx.doi.org/10.1016/j.neuint.2007.10.006
Título revista:Neurochemistry International
Título revista abreviado:Neurochem. Int.
ISSN:01970186
CODEN:NEUID
CAS:4 (4 fluorophenyl) 2 (4 methylsulfinylphenyl) 5 (4 pyridyl)imidazole, 152121-47-6; anthra[1,9 cd]pyrazol 6(2h) one, 129-56-6; caspase 3, 169592-56-7; mitogen activated protein kinase 1, 137632-08-7; mitogen activated protein kinase 3, 137632-07-6; stress activated protein kinase, 155215-87-5; Caspase 3, EC 3.4.22.-; Enzyme Inhibitors; Extracellular Signal-Regulated MAP Kinases, EC 2.7.1.37; JNK Mitogen-Activated Protein Kinases, EC 2.7.1.37; p38 Mitogen-Activated Protein Kinases, EC 2.7.1.37
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01970186_v52_n4-5_p857_Vacotto

Referencias:

  • Barone, F.C., Irving, E.A., Ray, A.M., Lee, J.C., Kassis, S., Kumar, S., Badger, A.M., Parsons, A.A., SB 239063, a second-generation p38 mitogen-activated protein kinase inhibitor, reduces brain injury and neurological deficits in cerebral focal ischemia (2001) J. Pharmacol. Exp. Ther., 296, pp. 312-321
  • Campbell, J.S., Segr, R., Graves, J.D., Graves, L.M., Jensen, A.M., Krebs, E.G., The MAP kinase cascade (1995) Recent Prog. Horm. Res., 50, pp. 131-159
  • Chen, Y.R., Wang, X., Templeton, D., Davis, R.J., Tan, T.H., The role of c-Jun N-terminal kinase (JNK) in apoptosis induced by ultraviolet C and gamma radiation. Duration of JNK activation may determine cell death and proliferation (1996) J. Biol. Chem., 271, pp. 31929-31936
  • Chen, Y.R., Meyer, C.F., Tan, T.H., Persistent activation of c-Jun N-terminal kinase 1 (JNK1) in gamma radiation-induced apoptosis (1996) J. Biol. Chem., 271, pp. 631-634
  • Chihab, R., Ferry, C., Koziel, V., Monin, P., Daval, J.L., Sequential activation of activator protein-1-related transcription factors and JNK protein kinases may contribute to apoptotic death induced by transient hypoxia in developing brain neurons (1998) Brain Res. Mol. Brain Res., 63, pp. 105-120
  • Cowan, K.J., Storey, K.B., Mitogen-activated protein kinases: new signaling pathways functioning in cellular responses to environmental stress (2003) J. Exp. Biol., 206, pp. 1107-1115
  • Derijard, B., Hibi, M., Wu, I.H., Barrett, T., Su, B., Deng, T., Karin, M., Davis, R.J., JNK1: a protein kinase simulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain (1994) Cell, 76, pp. 1025-1037
  • Derijard, B., Raingeaud, J., Barrett, T., Wu, I.H., Han, J., Ulevitch, R.J., Davis, R.J., Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms (1995) Science, 267, pp. 682-685
  • Enomoto, A., Suzuki, N., Hirano, K., Matsumoto, Y., Morita, A., Sakai, K., Koyama, H., Involvement of SAPK/JNK pathway in X-ray-induced rapid cell death of human T-cell leukemia cell line MOLT-4 (2000) Cancer Lett., 155, pp. 137-144
  • Enomoto, A., Suzuki, N., Liu, C., Kang, Y., Zhu, J., Serizawa, S., Matsumoto, Y., Hosoi, Y., Involvement of c-Jun NH2-terminal kinase-1 in heat-induced apoptotic cell death of human monoblastic leukaemia U937 cells (2001) Int. J. Radiat. Biol., 77, pp. 867-874
  • Enomoto, A., Suzuki, N., Morita, A., Ito, M., Liu, C.Q., Matsumoto, Y., Yoshioka, K., Hosoi, Y., Caspase-mediated cleavage of JNK during stress-induced apoptosis (2003) Biochem. Biophys. Res. Commun., 306, pp. 837-842
  • Gavrieli, Y., Sherman, Y., Ben-Sasson, S.A., Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation (1992) J. Cell Biol., 119, pp. 493-501
  • Hamburger, V., (1960) A Manual of Experimental Embryology, , The University of Chicago Press, Chicago pp. 143-149
  • Han, B.H., Choi, J., Holtzman, D.M., Evidence that p38 mitogen-activated protein kinase contributes to neonatal hypoxic-ischemia brain injury (2002) Dev. Neurosci., 24, pp. 405-410
  • Harper, S.J., LoGrasso, P., Signalling for survival and death in neurons: the role of stress-activated kinases, JNK and p38 (2001) Cell Signal., 13, pp. 299-310
  • Hayashi, T., Sakai, K., Sasaki, C., Zhang, W.R., Warita, H., Abe, K., c-Jun N-terminal kinase (JNK) and JNK interacting protein response in rat brain after transient middle cerebral artery occlusion (2000) Neurosci. Lett., 284, pp. 195-199
  • Hirata, Y., Furuta, K., Miyazaki, S., Suzuki, M., Kiuchi, K., Anti-apoptotic and pro-apoptotic effect of NEPP11 on manganese-induced apoptosis and JNK pathway activation in PC12 cells (2004) Brain Res., 1021, pp. 241-247
  • Hu, B.R., Liu, C.L., Park, D.J., Alteration of MAP kinase pathways after transient forebrain ischemia (2000) J. Cereb. Blood Flow Metab., 20, pp. 1089-1095
  • Impey, S., Obrietan, K., Storm, D.R., Making new connections: role of ERK/MAP kinase signaling in neuronal plasticity (1999) Neuron, 23, pp. 11-14
  • Ip, Y.T., Davis, R.J., Signal transduction by the c-Jun N-terminal kinase (JNK) from inflammation to development (1998) Curr. Opin. Cell Biol., 10, pp. 205-219
  • Irving, E.A., Bamford, M., Role of mitogen- and stress-activated kinases in ischemic injury (2002) J. Cereb. Blood Flow Metab., 22, pp. 631-647
  • Kawasaki, H., Morooka, T., Shimohama, S., Kimura, J., Hirano, T., Gotoh, Y., Nishida, E., Activation and involvement of p38 kinase mitogen-activated protein kinase in glutamate-induced apoptosis in rat cerebellar granule cells (1997) J. Biol. Chem., 272, pp. 18518-18521
  • Kelly, F.J., Free radical disorders of preterm infants (1993) Br. Med. Bull., 49, pp. 668-678
  • Kuan, C.Y., Yang, D.D., Samanta Roy, D.R., Davis, R.J., Rakic, P., Flavell, R.A., The JNK1 and JNK2 protein kinases are required for regional specific apoptosis during early brain development (1999) Neuron, 22, pp. 667-676
  • Kummer, J.L., Rao, P.K., Heidenreich, K.A., Apoptosis induced by withdrawal of trophic factors is mediated by mitogen-activated protein kinase (1997) J. Biol. Chem., 272, pp. 20490-20494
  • Kunz, M., Ibrahim, S., Koczan, D., Thiesen, H.J., Köhler, H.J., Acker, T., Plate, K.H., Gross, G., Activation of c-Jun NH2-terminal kinase/stress-activated protein kinase (JNK/SAPK) is critical for hypoxia-induced apoptosis of human malignant melanoma (2001) Cell Growth Differ., 12, pp. 137-145
  • Kyriakis, J.M., Banerjee, P., Nikolakaki, E., Dai, T., Rubie, E.A., Ahmad, M.F., Avruch, J., Woodgett, J.R., The stress-activated protein kinase subfamily of c-Jun kinases (1994) Nature, 369, pp. 156-160
  • L'Allemain, G., Deciphering the MAP kinase pathway (1994) Prog. Growth Factor Res., 5, pp. 291-334
  • Legos, J.J., Erhardt, J.A., White, R.F., Lenhard, S.C., Chandra, S., Parsons, A.A., Tuma, R.F., Barone, F.C., SB 239063, a novel inhibitor, attenuates early neuronal injury following ischemia (2001) Brain Res., 892, pp. 70-77
  • Lennmyr, F., Karlsson, S., Gerwins, P., Ata, K.A., Terent, A., Activation of mitogen-activated protein kinases in experimental cerebral ischemia (2002) Acta Neurol. Scand., 106, pp. 333-340
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, P.J., Protein measurement with folin phenol reagent (1951) J. Biol. Chem., 193, pp. 265-275
  • Pozo Devoto, V.M., Chavez, J.C., Fiszer de Plazas, S., Acute hypoxia and programmed cell death in developing CNS: differential vulnerability of chick optic tectum layers (2006) Neuroscience, 142, pp. 645-653
  • Razidio, G.L., Kortum, R.L., Haferbier, J.L., Lewis, R.E., Phosphorylation regulates KSR1 stability, ERK activation, and cell proliferation (2004) J. Biol. Chem., 279, pp. 47808-47814
  • Robinson, M.J., Cobb, M.H., Mitogen-activated protein kinase pathways (1997) Curr. Opin. Cell Biol., 9, pp. 180-186
  • Rodriguez Gil, D.J., Viapiano, M.S., Fiszer de Plazas, S., Acute hypoxic hypoxia transiently reduces GABAA binding site number in developing chick optic lobe (2000) Dev. Brain Res., 124, pp. 67-72
  • Rodriguez Gil, D.J., Carmona, C., Negri, G., Fiszer de Plazas, S., Hypoxia differentially reduces GABAA receptor density during embryonic chick optic lobe development (2004) Neurochem. Res., 29, pp. 681-686
  • Sakata, N., Patel, H.R., Terada, N., Aruffo, A., Jonson, G.L., Gelfand, E.W., Selective activation of c-Jun kinase mitogen-activated protein kinase by CD40 on human B cells (1995) J. Biol. Chem., 270, pp. 30823-30828
  • Sanchez, I., Hughes, R.T., Mayer, B.J., Yee, K., Woodgett, J.R., Avruch, J., Kyriakis, J.M., Zon, L.I., Role of SAPK/ERK kinase-1 in the stress-activated pathway regulating transcription factor c-Jun (1994) Nature, 372, pp. 794-798
  • Stambe, C., Atkins, R.C., Hill, P.A., Nikolic-Paterson, D.J., Activation and cellular localization of the p38 and JNK MAPK pathways in rat crescentic glomerulonephritis (2003) Kidney Int., 64, pp. 2121-2132
  • Takagi, Y., Nozaki, K., Sugino, T., Hattori, I., Hashimoto, N., Phosphorylation of c-Jun NH(2)-terminal kinase and p38 mitogen-activated protein kinase alter transient forebrain ischemia in mice (2000) Neurosci. Lett., 294, pp. 117-120
  • Vacotto, M., Rodriguez Gil, D.J., Mitridate de Novara, A., Fiszer de Plazas, S., Differential and irreversible CNS ontogenic reduction in maximal MK-801 binding site number in the NMDA receptor after acute hypoxic hypoxia (2003) Brain Res., 976, pp. 202-208
  • Vacotto, M., Paz, D., Fiszer de Plazas, S., Hypoxia-induced cell death and activation of pro- and anti-apoptotic proteins in developing chick optic lobe (2006) Neurochem. Res., 31, pp. 1003-1009
  • Walton, K.M., DiRocco, R., Bartlett, B.A., Koury, E., Marcy, V.R., Jarvis, B., Schaefer, E.M., Bhat, R.V., Activation of p38 MAPK in microglia after ischemia (1998) J. Neurochem., 70, pp. 1764-1767
  • Wang, X.Z., Ron, D., Stress-induced phosphorylation and activation of the transcriptional factor CHOP (GADD153) by p38 MAP Kinase (1996) Science, 272, pp. 1347-1349
  • Widmann, C., Gervwins, P., Johnson, N.L., Jarper, M.B., Johnson, G.L., MEK kinase 1, a substrate for DEVD-directed caspases, is involved in genotoxin-induced apoptosis (1998) Mol. Cell. Biol., 18, pp. 2416-2429
  • Xia, Z., Dickens, M., Raingeaud, J., Davis, R.J., Greenberg, M.E., Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis (1995) Science, 270, pp. 1326-1331
  • Yan, M., Dai, T., Deak, J.C., Kyriakis, J.M., Zon, L.I., Woodgett, J.R., Templeton, D.J., Activation of stress-activated protein kinase by MEKK1 phosphorylation of its activator SEK1 (1994) Nature, 372, pp. 798-800
  • Yang, D.D., Kuan, C.Y., Whitmarsh, A.J., Rincon, M., Zheng, T.S., Davis, R.J., Rakic, P., Flavell, R.A., Anscence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jan3 gene (1997) Nature, 389, pp. 865-870
  • Yto, Y., Oh-hashi, K., Kiuchi, K., Hirata, Y., p44/42 MAP kinase and c-Jun N-terminal kinase contribute to the up-regulation of Caspase-3 in manganese-induced apoptosis in PC12 cells (2006) Brain Res., 1099, pp. 1-7
  • Zhuang, S., Schnellmann, R.G., A death-promoting role for extracellular signal-regulated kinase (2006) J. Pharmacol. Exp. Ther., 319, pp. 991-997

Citas:

---------- APA ----------
Vacotto, M., Coso, O. & Fiszer de Plazas, S. (2008) . Programmed cell death and differential JNK, p38 and ERK response in a prenatal acute hypoxic hypoxia model. Neurochemistry International, 52(4-5), 857-863.
http://dx.doi.org/10.1016/j.neuint.2007.10.006
---------- CHICAGO ----------
Vacotto, M., Coso, O., Fiszer de Plazas, S. "Programmed cell death and differential JNK, p38 and ERK response in a prenatal acute hypoxic hypoxia model" . Neurochemistry International 52, no. 4-5 (2008) : 857-863.
http://dx.doi.org/10.1016/j.neuint.2007.10.006
---------- MLA ----------
Vacotto, M., Coso, O., Fiszer de Plazas, S. "Programmed cell death and differential JNK, p38 and ERK response in a prenatal acute hypoxic hypoxia model" . Neurochemistry International, vol. 52, no. 4-5, 2008, pp. 857-863.
http://dx.doi.org/10.1016/j.neuint.2007.10.006
---------- VANCOUVER ----------
Vacotto, M., Coso, O., Fiszer de Plazas, S. Programmed cell death and differential JNK, p38 and ERK response in a prenatal acute hypoxic hypoxia model. Neurochem. Int. 2008;52(4-5):857-863.
http://dx.doi.org/10.1016/j.neuint.2007.10.006