Abstract:
The factorization theorems are a generalization for J-biexpansive meromorphic operator-valued functions on an infinite-dimensional Hilbert space of the theorems on decomposition of J-expansive matrix functions on a finite-dimensional Hilbert space due to A. V. Efimov and V. P. Potapov [Uspekhi Mat. Nauk 28 (1973), 65-130; Trudy Moskov. Mat. Obšč. 4 (1955), 125-236]. They also generalize theorems on factorization of J-expansive meromorphic operator functions due to Ju. P. Ginzburg [Izv. Vysš. Učebn. Zaved. Matematika 32 (1963), 45-53]. Within the framework of generalized network theory, the results can be applied to the J-biexpansive real operators that characterize a Hilbert port. Application of the extraction procedure to a given real operator leads to its splitting into a product of real factors, corresponding to Hilbert ports of a simpler structure. This can be interpreted as an extension of the classical method of synthesis of passive n-ports by factor decomposition. © 1981.
Referencias:
- Belevitch, (1968) Classical Network Theory, , Holden-Day, San Francisco
- Wohlers, (1969) Lumped and Distributed Passive Networks, , Academic Press, New York
- Saeks, (1972) Generalized Networks, , Holt, Rinehart & Winston, New York
- Efimov, Potapov, J-expansive matrix functions and their role in the theory of electrical circuits (1973) Uspekhi Mat. Nauk, 28 (1), pp. 65-130. , [in Russian]
- Belevitch, Factorization of scattering matrices with applications to passive network synthesis (1963) Philos. Res. Rep., 18 (4), pp. 275-317
- Youla, Cascade Synthesis of Passive n-Ports (1964) Tech. Rept. RADC-TDR-64-332, , Rome Air Development Center, Rome, New York
- Potapov, The multiplicative structure of J-contractive matrix functions (1955) Trudy Moskov. Mat. Obšč., 4, pp. 125-236
- Potapov, (1960) Amer. Math. Soc. Transl. (2), 15, pp. 131-243. , English transl
- González Domínguez, On the factorization of scattering matrices chain matrices and transfer matrices (1975) Annali di Matematica Pura ed Applicata, Series 4, 103, pp. 161-186
- Zemanian, The Hilbert port (1970) SIAM Journal on Applied Mathematics, 18, pp. 98-138
- Ginzburg, On multiplicative representations of J-nonexpansive operator-functions, I (1967) Mat. Issled., 2 (2), pp. 52-83
- Ginzburg, (1970) Amer. Math. Soc. Trans. (2), 96, pp. 189-221. , English transl
- Kovalishina, Potapov, The multiplicative structure of analytical real J-non-contracting matrix functions (1965) Izv. Akad. Nauk Armjan. SSSR, 18 (6), pp. 3-10. , [in Russian]
- Gnavi, Factorizatión de Operadores Característicos de Puertos de Hilbert (1975) Trabajos de Matemática No. 5, pp. 1-47. , Instituto Argentino de Matemática
- Brodskiǐ, Triangular and Jordan Representations of Linear Operators (1971) Transl. Math. Monographs, 32. , Amer. Math. Soc, Providence, R.I
- Ginzburg, A maximum principle for J-contractive operator functions and some of its consequences (1963) Izv. Vysš. Učebn. Zaved. Matematika, 32 (1), pp. 45-53. , [in Russian]
Citas:
---------- APA ----------
(1981)
. Factorization of J-expansive meromorphic operator-valued functions. Advances in Applied Mathematics, 2(1), 13-23.
http://dx.doi.org/10.1016/0196-8858(81)90037-3---------- CHICAGO ----------
Gnavi, G.
"Factorization of J-expansive meromorphic operator-valued functions"
. Advances in Applied Mathematics 2, no. 1
(1981) : 13-23.
http://dx.doi.org/10.1016/0196-8858(81)90037-3---------- MLA ----------
Gnavi, G.
"Factorization of J-expansive meromorphic operator-valued functions"
. Advances in Applied Mathematics, vol. 2, no. 1, 1981, pp. 13-23.
http://dx.doi.org/10.1016/0196-8858(81)90037-3---------- VANCOUVER ----------
Gnavi, G. Factorization of J-expansive meromorphic operator-valued functions. Adv. Appl. Math. 1981;2(1):13-23.
http://dx.doi.org/10.1016/0196-8858(81)90037-3