Artículo

Cerniello, F.M.; Carretero, O.A.; Carbajosa, N.A.L.; Cerrato, B.D.; Santos, R.A.; Grecco, H.E.; Gironacci, M.M. "MAS1 Receptor Trafficking Involves ERK1/2 Activation Through a β-Arrestin2-Dependent Pathway" (2017) Hypertension. 70(5):982-989
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The MAS1 receptor (R) exerts protective effects in the brain, heart, vessels, and kidney. R trafficking plays a critical function in signal termination and propagation and in R resensitization. We examined MAS1R internalization and trafficking on agonist stimulation and the role of β-arrestin2 in the activation of ERK1/2 (extracellular signal-regulated kinase 1/2) and Akt after MAS1R stimulation. Human embryonic kidney 293T cells were transfected with the coding sequence for MAS1R-YFP (MAS1R fused to yellow fluorescent protein). MAS1R internalization was evaluated by measuring the MAS1R present in the plasma membrane after agonist stimulation using a ligand-binding assay. MAS1R trafficking was evaluated by its colocalization with trafficking markers. MAS1R internalization was blocked in the presence of shRNAcaveolin-1 and with dominant negatives for Eps15 (a protein involved in endocytosed Rs by clathrin-coated pits) and for dynamin. After stimulation, MAS1R colocalized with Rab11 - a slow recycling vesicle marker - and not with Rab4 - a fast recycling vesicle marker - or LysoTracker - a lysosome marker. Cells transfected with MAS1R showed an increase in Akt and ERK1/2 activation on angiotensin-(1-7) stimulation, which was blocked when the clathrin-coated pits pathway was blocked. Suppression of β-arrestin2 by shRNA reduced the angiotensin-(1-7)-induced ERK1/2 activation, whereas Akt activation was not modified. We conclude that on agonist stimulation, MAS1R is internalized through clathrin-coated pits and caveolae in a dynamin-dependent manner and is then slowly recycled back to the plasma membrane. MAS1R induced Akt and ERK1/2 activation from early endosomes, and the activation of ERK1/2 was mediated by β-arrestin2. Thus, MAS1R activity and density may be tightly controlled by the cell. © 2017 American Heart Association, Inc.

Registro:

Documento: Artículo
Título:MAS1 Receptor Trafficking Involves ERK1/2 Activation Through a β-Arrestin2-Dependent Pathway
Autor:Cerniello, F.M.; Carretero, O.A.; Carbajosa, N.A.L.; Cerrato, B.D.; Santos, R.A.; Grecco, H.E.; Gironacci, M.M.
Filiación:Departamento de Química Biológica, IQUIFIB-CONICET, Universidad de Buenos Aires, Junín 956, Buenos Aires, 1113, Argentina
Division of Hypertension and Vascular Research, Henry Ford Hospital, Detroit, MI, United States
Department of Physiology, Federal University of Minas Gerais, Belo Horizonte, Brazil
Departamento de Física, Universidad de Buenos Aires, IFIBA-CONICET, Buenos Aires, Argentina
Palabras clave:angiotensin-(1-7); arrestin; endocytosis; endosomes; MAS1 receptor; trafficking; angiotensin[1-7]; beta arrestin 2; caveolin 1; dynamin; G protein coupled receptor; MAS1 receptor; mitogen activated protein kinase 1; mitogen activated protein kinase 3; protein kinase B; Rab protein; Rab11 protein; short hairpin RNA; unclassified drug; yellow fluorescent protein; angiotensin I; angiotensin I (1-7); beta arrestin 2; G protein coupled receptor; mitogen activated protein kinase; oncoprotein; peptide fragment; proto-oncogene proteins c-mas-1; Article; cell membrane; controlled study; embryo; endosome; enzyme activation; genetic transfection; HEK293T cell line; human; human cell; internalization; lysosome; priority journal; receptor binding assay; endocytosis; HEK293 cell line; metabolism; physiology; protein transport; signal transduction; Angiotensin I; beta-Arrestin 2; Endocytosis; Endosomes; Extracellular Signal-Regulated MAP Kinases; HEK293 Cells; Humans; Peptide Fragments; Protein Transport; Proto-Oncogene Proteins; Receptors, G-Protein-Coupled; Signal Transduction
Año:2017
Volumen:70
Número:5
Página de inicio:982
Página de fin:989
DOI: http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.09789
Título revista:Hypertension
Título revista abreviado:Hypertension
ISSN:0194911X
CODEN:HPRTD
CAS:angiotensin[1-7], 39386-80-6; dynamin; mitogen activated protein kinase 1, 137632-08-7; mitogen activated protein kinase 3, 137632-07-6; protein kinase B, 148640-14-6; angiotensin I, 9041-90-1; mitogen activated protein kinase, 142243-02-5; Angiotensin I; angiotensin I (1-7); beta-Arrestin 2; Extracellular Signal-Regulated MAP Kinases; Peptide Fragments; Proto-Oncogene Proteins; proto-oncogene proteins c-mas-1; Receptors, G-Protein-Coupled
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0194911X_v70_n5_p982_Cerniello

Referencias:

  • Santos, R.A., Angiotensin-(1-7) (2014) Hypertension, 63, pp. 1138-1147
  • Bennion, D.M., Haltigan, E., Regenhardt, R.W., Steckelings, U.M., Sumners, C., Neuroprotective mechanisms of the ace2-Angiotensin-(1-7)-mas axis in stroke (2015) Curr Hypertens Rep, 17, p. 3
  • Gironacci, M.M., Angiotensin-(1-7): Beyond its central effects on blood pressure (2015) Ther Adv Cardiovasc Dis, 9, pp. 209-216
  • Simões, E., Silva, A.C., Teixeira, M.M., Ace inhibition, ace2 and angiotensin-(1-7) axis in kidney and cardiac inflammation and fibrosis (2016) Pharmacol Res, 107, pp. 154-162
  • Santos, R.A., Simoes E Silva, A.C., Maric, C., Angiotensin-(1-7) is an endogenous ligand for the g protein-coupled receptor mas (2003) Proc Natl Acad Sci USA, 100, pp. 8258-8263
  • Heringer-Walther, S., Gembardt, F., Perschel, F.H., Katz, N., Schultheiss, H.P., Walther, T., The genetic deletion of mas abolishes salt induced hypertension in mice (2012) Eur J Pharmacol, 689, pp. 147-153
  • Esteban, V., Heringer-Walther, S., Sterner-Kock, A., De Bruin, R., Van Den Engel, S., Wang, Y., Mezzano, S., Walther, T., Angiotensin-(1-7) and the g protein-coupled receptor mas are key players in renal inflammation (2009) PLoS One, 4, p. e5406
  • Rabelo Xu, P., Todiras, M., Sampaio, W.O., Buttgereit, J., Bader, M., Santos, R.A., Alenina, N., Ablation of angiotensin (1-7) receptor mas in c57bl/6 mice causes endothelial dysfunction (2008) J Am Soc Hypertens, 2, pp. 418-424
  • Tian, X., Kang, D.S., Benovic, J.L., β-Arrestins and G protein-coupled receptor trafficking (2014) Handb Exp Pharmacol, 219, pp. 173-186
  • Wolfe, B.L., Trejo, J., Clathrin-dependent mechanisms of g protein-coupled receptor endocytosis (2007) Traffic, 8, pp. 462-470
  • Scita, G., Di Fiore, P.P., The endocytic matrix (2010) Nature, 463, pp. 464-473
  • Klumperman, J., Raposo, G., The complex ultrastructure of the endolysosomal system (2014) Cold Spring Harb Perspect Biol, 6, p. a016857
  • Campden, R., Audet, N., Hébert, T.E., Nuclear g protein signaling: New tricks for old dogs (2015) J Cardiovasc Pharmacol, 65, pp. 110-122
  • Branco, A.F., Allen, B.G., G protein-coupled receptor signaling in cardiac nuclear membranes (2015) J Cardiovasc Pharmacol, 65, pp. 101-109
  • Shenoy, S.K., Lefkowitz, R.J., β-Arrestin-mediated receptor trafficking and signal transduction (2011) Trends Pharmacol Sci, 32, pp. 521-533
  • Rajagopal, S., Rajagopal, K., Lefkowitz, R.J., Teaching old receptors new tricks: Biasing seven-transmembrane receptors (2010) Nat Rev Drug Discov, 9, pp. 373-386
  • Gironacci, M.M., Adamo, H.P., Corradi, G., Santos, R.A., Ortiz, P., Carretero, O.A., Angiotensin (1-7) induces mas receptor internalization (2011) Hypertension, 58, pp. 176-181
  • Cerrato, B.D., Carretero, O.A., Janic, B., Grecco, H.E., Gironacci, M.M., Heteromerization between the bradykinin b2 receptor and the angiotensin-(1-7) mas receptor: Functional consequences (2016) Hypertension, 68, pp. 1039-1048
  • Benmerah, A., Lamaze, C., Bégue, B., Schmid, S.L., Dautry-Varsat, A., Cerf-Bensussan, N., Ap-2/eps15 interaction is required for receptor-mediated endocytosis (1998) J Cell Biol, 140, pp. 1055-1062
  • Ferguson, S.M., De Camilli, P., Dynamin, a membrane-remodelling gtpase (2012) Nat Rev Mol Cell Biol, 13, pp. 75-88
  • Magalhaes, A.C., Dunn, H., Ferguson, S.S., Regulation of gpcr activity, trafficking and localization by gpcr-interacting proteins (2012) Br J Pharmacol, 165, pp. 1717-1736
  • Stenmark, H., Rab gtpases as coordinators of vesicle traffic (2009) Nat Rev Mol Cell Biol, 10, pp. 513-525
  • Bkaily, G., Sleiman, S., Stephan, J., Asselin, C., Choufani, S., Kamal, M., Jacques, D., D'Orléans-Juste, P., Angiotensin II at1 receptor internalization, translocation and de novo synthesis modulate cytosolic and nuclear calcium in human vascular smooth muscle cells (2003) Can J Physiol Pharmacol, 81, pp. 274-287
  • Lu, D., Yang, H., Shaw, G., Raizada, M.K., Angiotensin II-induced nuclear targeting of the angiotensin type 1 (at1) receptor in brain neurons (1998) Endocrinology, 139, pp. 365-375
  • Galandrin, S., Denis, C., Boularan, C., Marie, J., M'Kadmi, C., Pilette, C., Dubroca, C., Galés, C., Cardioprotective angiotensin-(1-7) peptide acts as a natural-biased ligand at the angiotensin II type 1 receptor (2016) Hypertension, 68, pp. 1365-1374
  • Hunyady, L., Molecular mechanisms of angiotensin II receptor internalization (1999) J Am Soc Nephrol, 10, pp. S47-S56
  • Gáborik, Z., Szaszák, M., Szidonya, L., Balla, B., Paku, S., Catt, K.J., Clark, A.J., Hunyady, L., Beta-Arrestin-And dynamin-dependent endocytosis of the at1 angiotensin receptor (2001) Mol Pharmacol, 59, pp. 239-247
  • Skieterska, K., Rondou, P., Van Craenenbroeck, K., Regulation of g proteincoupled receptors by ubiquitination (2017) Int J Mol Sci, 18, pp. 923-946
  • Lin, A.W., Man, H.Y., Ubiquitination of neurotransmitter receptors and postsynaptic scaffolding proteins (2013) Neural Plast, 2013, p. 432057
  • Li, H., Armando, I., Yu, P., Dopamine 5 receptor mediates ang II type 1 receptor degradation via a ubiquitin-proteasome pathway in mice and human cells (2008) J Clin Invest, 118, pp. 2180-2189
  • Gwathmey, T.M., Westwood, B.M., Pirro, N.T., Tang, L., Rose, J.C., Diz, D.I., Chappell, M.C., Nuclear angiotensin-(1-7) receptor is functionally coupled to the formation of nitric oxide (2010) Am J Physiol Renal Physiol, 299, pp. F983-F990
  • Li, Y., Zeng, Z., Cao, Y., Liu, Y., Ping, F., Liang, M., Xue, Y., Jiang, W., Angiotensin-converting enzyme 2 prevents lipopolysaccharideinduced rat acute lung injury via suppressing the erk1/2 and nf-?b signaling pathways (2016) Sci Rep, 6, p. 27911
  • Alzayadneh, E.M., Chappell, M.C., Angiotensin-(1-7) abolishes ageinduced cellular hypertrophy and myofibroblast transformation via inhibition of erk1/2 (2014) Cell Signal, 26, pp. 3027-3035

Citas:

---------- APA ----------
Cerniello, F.M., Carretero, O.A., Carbajosa, N.A.L., Cerrato, B.D., Santos, R.A., Grecco, H.E. & Gironacci, M.M. (2017) . MAS1 Receptor Trafficking Involves ERK1/2 Activation Through a β-Arrestin2-Dependent Pathway. Hypertension, 70(5), 982-989.
http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.09789
---------- CHICAGO ----------
Cerniello, F.M., Carretero, O.A., Carbajosa, N.A.L., Cerrato, B.D., Santos, R.A., Grecco, H.E., et al. "MAS1 Receptor Trafficking Involves ERK1/2 Activation Through a β-Arrestin2-Dependent Pathway" . Hypertension 70, no. 5 (2017) : 982-989.
http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.09789
---------- MLA ----------
Cerniello, F.M., Carretero, O.A., Carbajosa, N.A.L., Cerrato, B.D., Santos, R.A., Grecco, H.E., et al. "MAS1 Receptor Trafficking Involves ERK1/2 Activation Through a β-Arrestin2-Dependent Pathway" . Hypertension, vol. 70, no. 5, 2017, pp. 982-989.
http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.09789
---------- VANCOUVER ----------
Cerniello, F.M., Carretero, O.A., Carbajosa, N.A.L., Cerrato, B.D., Santos, R.A., Grecco, H.E., et al. MAS1 Receptor Trafficking Involves ERK1/2 Activation Through a β-Arrestin2-Dependent Pathway. Hypertension. 2017;70(5):982-989.
http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.09789