Artículo

Luque, G.M.; Lopez-Vicchi, F.; María Ornstein, A.; Brie, B.; De Winne, C.; Fiore, E.; Perez-Millan, M.I.; Mazzolini, G.; Rubinstein, M.; Becu-Villalobos, D. "Chronic hyperprolactinemia evoked by disruption of lactotrope dopamine d2 receptors impacts on liver and adipocyte genes related to glucose and insulin balance" (2016) American Journal of Physiology - Endocrinology and Metabolism. 311(6):E974-E988
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We studied the impact of high prolactin titers on liver and adipocyte gene expression related to glucose and insulin homeostasis in correlation with obesity onset. To that end we used mutant female mice that selectively lack dopamine type 2 receptors (D2Rs) from pituitary lactotropes (lacDrd2KO), which have chronic high prolactin levels associated with increased body weight, marked increments in fat depots, adipocyte size, and serum lipids, and a metabolic phenotype that intensifies with age. LacDrd2KO mice of two developmental ages, 5 and 10 mo, were used. In the first time point, obesity and increased body weight are marginal, although mice are hyperprolactinemic, whereas at 10 mo there is marked adiposity with a 136% increase in gonadal fat and a 36% increase in liver weight due to lipid accumulation. LacDrd2KO mice had glucose intolerance, hyperinsulinemia, and impaired insulin response to glucose already in the early stages of obesity, but changes in liver and adipose tissue transcription factors were time and tissue dependent. In chronic hyperprolactinemic mice liver Prlr were upregulated, there was liver steatosis, altered expression of the lipogenic transcription factor Chrebp, and blunted response of Srebp-1c to refeeding at 5 mo of age, whereas no effect was observed in the glycogenesis pathway. On the other hand, in adipose tissue a marked decrease in lipogenic transcription factor expression was observed when morbid obesity was already settled. These adaptive changes underscore the role of prolactin signaling in different tissues to promote energy storage. © 2016 the American Physiological Society.

Registro:

Documento: Artículo
Título:Chronic hyperprolactinemia evoked by disruption of lactotrope dopamine d2 receptors impacts on liver and adipocyte genes related to glucose and insulin balance
Autor:Luque, G.M.; Lopez-Vicchi, F.; María Ornstein, A.; Brie, B.; De Winne, C.; Fiore, E.; Perez-Millan, M.I.; Mazzolini, G.; Rubinstein, M.; Becu-Villalobos, D.
Filiación:Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
Laboratorio de Terapia Génica, Instituto de Investigaciones en Medicina Traslacional (IIMT-CONICET), Universidad Austral, Buenos Aires, Argentina
Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, CONICET, Departamento de Fisiología, y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Argentina
Palabras clave:Carbohydrate-responsive element-binding protein; Glucokinase; Insulin; Lipogenesis; Sterol regulatory element-binding protein-1c; adiponectin; carbohydrate responsive element binding protein; cholesterol; cre recombinase; cyclophilin; dopamine 2 receptor; fatty acid synthase; glucocorticoid receptor; glucokinase; glucose; glucose 6 phosphate; glycogen synthase 2; growth hormone receptor; insulin; lipoprotein lipase; messenger RNA; prolactin; prolactin receptor; protein; sterol regulatory element binding protein 1c; triacylglycerol; triacylglycerol lipase; unclassified drug; dopamine 2 receptor; glucose; insulin; Mlxipl protein, mouse; nuclear protein; prolactin receptor; Srebf1 protein, mouse; sterol regulatory element binding protein 1; transcription factor; adipocyte; adipose tissue; animal experiment; animal tissue; Article; body weight; cholesterol blood level; fatty liver; female; gene expression; genotype; glucose homeostasis; glucose intolerance; glycogen analysis; glycogen liver level; hyperprolactinemia; hypophysis; immunohistochemistry; insulin response; lipid storage; liver; liver cell; liver weight; mouse; nonhuman; obesity; pancreas islet beta cell; phenotype; priority journal; triacylglycerol blood level; adipocyte; animal; enzyme linked immunosorbent assay; genetics; glucose tolerance test; homeostasis; hyperprolactinemia; knockout mouse; lipogenesis; liver; metabolism; prolactin secreting cell; radioimmunoassay; real time polymerase chain reaction; upregulation; Adipocytes; Animals; Enzyme-Linked Immunosorbent Assay; Fatty Liver; Female; Gene Expression; Glucose; Glucose Tolerance Test; Hepatocytes; Homeostasis; Hyperprolactinemia; Immunohistochemistry; Insulin; Lactotrophs; Lipogenesis; Liver; Mice; Mice, Knockout; Nuclear Proteins; Obesity; Radioimmunoassay; Real-Time Polymerase Chain Reaction; Receptors, Dopamine D2; Receptors, Prolactin; Sterol Regulatory Element Binding Protein 1; Transcription Factors; Up-Regulation
Año:2016
Volumen:311
Número:6
Página de inicio:E974
Página de fin:E988
DOI: http://dx.doi.org/10.1152/ajpendo.00200.2016
Título revista:American Journal of Physiology - Endocrinology and Metabolism
Título revista abreviado:Am. J. Physiol. Endocrinol. Metab.
ISSN:01931849
CODEN:AJPMD
CAS:adiponectin, 283182-39-8; cholesterol, 57-88-5; cyclophilin, 126043-36-5; fatty acid synthase, 9045-77-6; glucokinase, 37237-53-9, 9001-36-9; glucose, 50-99-7, 84778-64-3; glucose 6 phosphate, 56-73-5; insulin, 9004-10-8; lipoprotein lipase, 83137-80-8, 9004-02-8; prolactin, 12585-34-1, 50647-00-2, 9002-62-4; protein, 67254-75-5; triacylglycerol lipase, 9001-62-1; Glucose; Insulin; Mlxipl protein, mouse; Nuclear Proteins; Receptors, Dopamine D2; Receptors, Prolactin; Srebf1 protein, mouse; Sterol Regulatory Element Binding Protein 1; Transcription Factors
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01931849_v311_n6_pE974_Luque

Referencias:

  • Al-Hasani, H., Joost, H.G., Nutrition-/diet-induced changes in gene expression in white adipose tissue (2005) Best Pract Res Clin Endocrinol Metab, 19, pp. 589-603
  • Asai-Sato, M., Okamoto, M., Endo, M., Yoshida, H., Murase, M., Ikeda, M., Sakakibara, H., Hirahara, F., Hypoadiponectinemia in lean lactating women: Prolactin inhibits adiponectin secretion from human adipocytes (2006) Endocr J, 53, pp. 555-562
  • Auffret, J., Viengchareun, S., Carré, N., Denis, R.G., Magnan, C., Marie, P.Y., Muscat, A., Binart, N., Beige differentiation of adipose depots in mice lacking prolactin receptor protects against high-fat-dietinduced obesity (2012) FASEB J, 26, pp. 3728-3737
  • Bacon, R.L., Kirkman, H., The response of the testis of the hamster to chronic treatment with different estrogens (1955) Endocrinology, 57, pp. 255-271
  • Bello, E.P., Mateo, Y., Gelman, D.M., Noaín, D., Shin, J.H., Low, M.J., Alvarez, V.A., Rubinstein, M., Cocaine supersensitivity and enhanced motivation for reward in mice lacking dopamine D2 autoreceptors (2011) Nat Neurosci, 14, pp. 1033-1038
  • Bibunstruct; Benhamed, F., Denechaud, P.D., Lemoine, M., Robichon, C., Moldes, M., Bertrand-Michel, J., Ratziu, V., Postic, C., The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans (2012) J Clin Invest, 122, pp. 2176-2194
  • Bole-Feysot, C., Goffin, V., Edery, M., Binart, N., Kelly, P.A., Prolactin (PRL) and its receptor: Actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice (1998) Endocr Rev, 19, pp. 225-268
  • Brandebourg, T.D., Bown, J.L., Ben-Jonathan, N., Prolactin upregulates its receptors and inhibits lipolysis and leptin release in male rat adipose tissue (2007) Biochem Biophys Res Commun, 357, pp. 408-413
  • Brelje, T.C., Stout, L.E., Bhagroo, N.V., Sorenson, R.L., Distinctive roles for prolactin and growth hormone in the activation of signal transducer and activator of transcription 5 in pancreatic islets of langerhans (2004) Endocrinology, 145, pp. 4162-4175
  • Buck, K., Vanek, M., Groner, B., Ball, R.K., Multiple forms of prolactin receptor messenger ribonucleic acid are specifically expressed and regulated in murine tissues and the mammary cell line HC11 (1992) Endocrinology, 130, pp. 1108-1114
  • Carobbio, S., Hagen, R.M., Lelliott, C.J., Slawik, M., Medina-Gomez, G., Tan, C.Y., Sicard, A., Vidal-Puig, A., Adaptive changes of the Insig1/SREBP1/SCD1 set point help adipose tissue to cope with increased storage demands of obesity (2013) Diabetes, 62, pp. 3697-3708
  • Clarke, D.L., Linzer, D.I., Changes in prolactin receptor expression during pregnancy in the mouse ovary (1993) Endocrinology, 133, pp. 224-232
  • Davis, J.A., Linzer, D.I., Expression of multiple forms of the prolactin receptor in mouse liver (1989) Mol Endocrinol, 3, pp. 674-680
  • Dentin, R., Pégorier, J.P., Benhamed, F., Foufelle, F., Ferré, P., Fauveau, V., Magnuson, M.A., Postic, C., Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression (2004) J Biol Chem, 279, pp. 20314-20326
  • Dimitriadis, G., Mitrou, P., Lambadiari, V., Maratou, E., Raptis SA. Insulin effects in muscle and adipose tissue (2011) Diabetes Res Clin Pract, 93, pp. S52-S59
  • Filhoulaud, G., Guilmeau, S., Dentin, R., Girard, J., Postic, C., Novel insights into ChREBP regulation and function (2013) Trends Endocrinol Metab, 24, pp. 257-268
  • Fiore, E.J., Bayo, J.M., Garcia, M.G., Malvicini, M., Lloyd, R., Piccioni, F., Rizzo, M., Mazzolini, G., Mesenchymal stromal cells engineered to produce IGF-I by recombinant adenovirus ameliorate liver fibrosis in mice (2015) Stem Cells Dev, 24, pp. 791-801
  • Fleenor, D., Arumugam, R., Freemark, M., Growth hormone and prolactin receptors in adipogenesis: STAT-5 activation, suppressors of cytokine signaling, and regulation of insulin-like growth factor I (2006) Horm Res, 66, pp. 101-110
  • Flint, D.J., Binart, N., Boumard, S., Kopchick, J.J., Kelly, P., Developmental aspects of adipose tissue in GH receptor and prolactin receptor gene disrupted mice: Site-specific effects upon proliferation, differentiation and hormone sensitivity (2006) J Endocrinol, 191, pp. 101-111
  • Flint, D.J., Binart, N., Kopchick, J., Kelly, P., Effects of growth hormone and prolactin on adipose tissue development and function (2003) Pituitary, 6, pp. 97-102
  • Foretz, M., Guichard, C., Ferré, P., Foufelle, F., Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes (1999) Proc Natl Acad Sci USA, 96, pp. 12737-12742
  • Foretz, M., Pacot, C., Dugail, I., Lemarchand, P., Guichard, C., Le Lièpvre, X., Berthelier-Lubrano, C., Foufelle, F., ADD1/SREBP-1c is required in the activation of hepatic lipogenic gene expression by glucose (1999) Mol Cell Biol, 19, pp. 3760-3768
  • Freemark, M., Avril, I., Fleenor, D., Driscoll, P., Petro, A., Opara, E., Kendall, W., Kelly, P.A., Targeted deletion of the PRL receptor: Effects on islet development, insulin production, and glucose tolerance (2002) Endocrinology, 143, pp. 1378-1385
  • Galsgaard, E.D., Nielsen, J.H., Møldrup, A., Regulation of prolactin receptor (PRLR) gene expression in insulin-producing cells. Prolactin and growth hormone activate one of the rat prlr gene promoters via STAT5a and STAT5b (1999) J Biol Chem, 274, pp. 18686-18692
  • García-Tornadú, I., Díaz-Torga, G., Risso, G.S., Silveyra, P., Cataldi, N., Ramirez, M.C., Low, M.J., Becu-Villalobos, D., Hypothalamic orexin, OX1, alphaMSH, NPY and MCRs expression in dopaminergic D2R knockout mice (2009) Neuropeptides, 43, pp. 267-274
  • García-Tornadú, I., Ornstein, A.M., Chamson-Reig, A., Wheeler, M.B., Hill, D.J., Arany, E., Rubinstein, M., Becu-Villalobos, D., Disruption of the dopamine d2 receptor impairs insulin secretion and causes glucose intolerance (2010) Endocrinology, 151, pp. 1441-1450
  • Grattan, D.R., 60 YEARS OF NEUROENDOCRINOLOGY: The hypothalamo- prolactin axis (2015) J Endocrinol, 226, pp. T101-T122
  • Greenman, Y., Tordjman, K., Stern, N., Increased body weight associated with prolactin secreting pituitary adenomas: Weight loss with normalization of prolactin levels (1998) Clin Endocrinol (Oxf), 48, pp. 547-553
  • Gualillo, O., Lago, F., García, M., Menéndez, C., Señarís, R., Casanueva, F.F., Diéguez, C., Prolactin stimulates leptin secretion by rat white adipose tissue (1999) Endocrinology, 140, pp. 5149-5153
  • Hagiwara, A., Cornu, M., Cybulski, N., Polak, P., Betz, C., Trapani, F., Terracciano, L., Hall, M.N., Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c (2012) Cell Metab, 15, pp. 725-738
  • Hartwell, H.J., Petrosky, K.Y., Fox, J.G., Horseman, N.D., Rogers, A.B., Prolactin prevents hepatocellular carcinoma by restricting innate immune activation of c-Myc in mice (2014) Proc Natl Acad Sci USA, 111, pp. 11455-11460
  • Herman, M.A., Peroni, O.D., Villoria, J., Schön, M.R., Abumrad, N.A., Blüher, M., Klein, S., Kahn, B.B., A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism (2012) Nature, 484, pp. 333-338
  • Horseman, N.D., Gregerson, K.A., Prolactin actions (2013) J Mol Endocrinol, 52, pp. RR95-R106
  • Horton, J.D., Bashmakov, Y., Shimomura, I., Shimano, H., Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice (1998) Proc Natl Acad Sci USA, 95, pp. 5987-5992
  • Huang, C., Snider, F., Cross, J.C., Prolactin receptor is required for normal glucose homeostasis and modulation of beta-cell mass during pregnancy (2009) Endocrinology, 150, pp. 1618-1626
  • Hurtado Del Pozo, C., Vesperinas-García, G., Rubio, M.Á., Corripio-Sánchez, R., Torres-García, A.J., Obregon, M.J., Calvo, R.M., ChREBP expression in the liver, adipose tissue and differentiated preadipocytes in human obesity (2011) Biochim Biophys Acta, 1811, pp. 1194-1200
  • Iizuka, K., Recent progress on the role of ChREBP in glucose and lipid metabolism (2013) Endocr J, 60, pp. 543-555
  • Iizuka, K., Bruick, R.K., Liang, G., Horton, J.D., Uyeda, K., Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis (2004) Proc Natl Acad Sci USA, 101, pp. 7281-7286
  • Iizuka, K., Horikawa, Y., ChREBP: A glucose-activated transcription factor involved in the development of metabolic syndrome (2008) Endocr J, 55, pp. 617-624
  • Kavarthapu, R., Tsai Morris, C.H., Dufau, M.L., Prolactin induces upregulation of its cognate receptor in breast cancer cells via transcriptional activation of its generic promoter by cross-talk between ER and STAT5 (2014) Oncotarget, 5, pp. 9079-9091
  • Lapensee, C.R., Horseman, N.D., Tso, P., Brandebourg, T.D., Hugo, E.R., Ben-Jonathan, N., The prolactin-deficient mouse has an unaltered metabolic phenotype (2006) Endocrinology, 147, pp. 4638-4645
  • Lebaron, M.J., Ahonen, T.J., Nevalainen, M.T., Rui, H., In vivo responsebased identification of direct hormone target cell populations using highdensity tissue arrays (2007) Endocrinology, 148, pp. 989-1008
  • Letexier, D., Peroni, O., Pinteur, C., Beylot, M., In vivo expression of carbohydrate responsive element binding protein in lean and obese rats (2005) Diabetes Metab, 31, pp. 558-566
  • Letexier, D., Pinteur, C., Large, V., Fréring, V., Beylot, M., Comparison of the expression and activity of the lipogenic pathway in human and rat adipose tissue (2003) J Lipid Res, 44, pp. 2127-2134
  • Ling, C., Hellgren, G., Gebre-Medhin, M., Dillner, K., Wennbo, H., Carlsson, B., Billig, H., Prolactin (PRL) receptor gene expression in mouse adipose tissue: Increases during lactation and in PRL-transgenic mice (2000) Endocrinology, 141, pp. 3564-3572
  • Ling, C., Svensson, L., Odén, B., Weijdegård, B., Edén, B., Edén, S., Billig, H., Identification of functional prolactin (PRL) receptor gene expression: PRL inhibits lipoprotein lipase activity in human white adipose tissue (2003) J Clin Endocrinol Metab, 88, pp. 1804-1808
  • Luque, G.M., Perez-Millán, M.I., Ornstein, A.M., Cristina, C., Becu-Villalobos, D., Inhibitory effects of antivascular endothelial growth factor strategies in experimental dopamine-resistant prolactinomas (2011) J Pharmacol Exp Ther, 337, pp. 766-774
  • Matsumoto, M., Ogawa, W., Teshigawara, K., Inoue, H., Miyake, K., Sakaue, H., Kasuga, M., Role of the insulin receptor substrate 1 and phosphatidylinositol 3-kinase signaling pathway in insulin-induced expression of sterol regulatory element binding protein 1c and glucokinase genes in rat hepatocytes (2002) Diabetes, 51, pp. 1672-1680
  • Meyre, D., Delplanque, J., Chèvre, J.C., Lecoeur, C., Lobbens, S., Gallina, S., Durand, E., Froguel, P., Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations (2009) Nat Genet, 41, pp. 157-159
  • Nadler, S.T., Stoehr, J.P., Schueler, K.L., Tanimoto, G., Yandell, B.S., Attie, A.D., The expression of adipogenic genes is decreased in obesity and diabetes mellitus (2000) Proc Natl Acad Sci USA, 97, pp. 11371-11376
  • Nagano, M., Kelly, P.A., Tissue distribution and regulation of rat prolactin receptor gene expression. Quantitative analysis by polymerase chain reaction (1994) J Biol Chem, 269, pp. 13337-13345
  • Nanbu-Wakao, R., Fujitani, Y., Masuho, Y., Muramatu, M., Wakao, H., Prolactin enhances CCAAT enhancer-binding protein-beta (C/EBP beta) and peroxisome proliferator-activated receptor gamma (PPAR gamma) messenger RNA expression and stimulates adipogenic conversion of NIH-3T3 cells (2000) Mol Endocrinol, 14, pp. 307-316
  • Nilsson, L., Olsson, A.H., Isomaa, B., Groop, L., Billig, H., Ling, C., A common variant near the PRL gene is associated with increased adiposity in males (2011) Mol Genet Metab, 102, pp. 78-81
  • Nilsson, L.A., Roepstorff, C., Kiens, B., Billig, H., Ling, C., Prolactin suppresses malonyl-CoA concentration in human adipose tissue (2009) Horm Metab Res, 41, pp. 747-751
  • Noaín, D., Pérez-Millán, M.I., Bello, E.P., Luque, G.M., Casas Cordero, R., Gelman, D.M., Peper, M., Rubinstein, M., Central dopamine D2 receptors regulate growth-hormonedependent body growth and pheromone signaling to conspecific males (2013) J Neurosci, 33, pp. 5834-5842
  • Nogalska, A., Sucajtys-Szulc, E., Swierczynski, J., Leptin decreases lipogenic enzyme gene expression through modification of SREBP-1c gene expression in white adipose tissue of aging rats (2005) Metabolism, 54, pp. 1041-1047
  • Ouhtit, A., Kelly, P.A., Morel, G., Visualization of gene expression of short and long forms of prolactin receptor in rat digestive tissues (1994) Am J Physiol, 266, pp. G807-G815
  • Pala, N.A., Laway, B.A., Misgar, R.A., Dar, R.A., Metabolic abnormalities in patients with prolactinoma: Response to treatment with cabergoline (2015) Diabetol Metab Syndr, 7, 99p
  • Perez Millan, M.I., Luque, G.M., Ramirez, M.C., Noain, D., Ornstein, A.M., Rubinstein, M., Becu-Villalobos, D., Selective disruption of dopamine D2 receptors in pituitary lactotropes increases body weight and adiposity in female mice (2014) Endocrinology, 155, pp. 829-839
  • Petryk, A., Fleenor, D., Driscoll, P., Freemark, M., Prolactin induction of insulin gene expression: The roles of glucose and glucose transporter-2 (2000) J Endocrinol, 164, pp. 277-286
  • Pi, X.J., Grattan, D.R., Increased expression of both short and long forms of prolactin receptor mRNA in hypothalamic nuclei of lactating rats (1999) J Mol Endocrinol, 23, pp. 13-22
  • Ramirez, M.C., Ornstein, A.M., Luque, G.M., Perez Millan, M.I., Garcia-Tornadu, I., Rubinstein, M., Becu-Villalobos, D., Pituitary and brain dopamine D2 receptors regulate liver gene sexual dimorphism (2015) Endocrinology, 156, pp. 1040-1051
  • Rui, L., Energy metabolism in the liver (2014) Compr Physiol, 4, pp. 177-197
  • Saltiel, A.R., Kahn, C.R., Insulin signalling and the regulation of glucose and lipid metabolism (2001) Nature, 414, pp. 799-806
  • Sauvé, D., Woodside, B., Neuroanatomical specificity of prolactin-induced hyperphagia in virgin female rats (2000) Brain Res, 868, pp. 306-314
  • Serri, O., Li, L., Mamputu, J.C., Beauchamp, M.C., Maingrette, F., Renier, G., The influences of hyperprolactinemia and obesity on cardiovascular risk markers: Effects of cabergoline therapy (2006) Clin Endocrinol (Oxf), 64, pp. 366-370
  • Shimano, H., Shimomura, I., Hammer, R.E., Herz, J., Goldstein, J.L., Brown, M.S., Horton, J.D., Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene (1997) J Clin Invest, 100, pp. 2115-2124
  • Sorenson, R.L., Brelje, T.C., Hegre, O.D., Marshall, S., Anaya, P., Sheridan, J.D., Prolactin (In vitro) decreases the glucose stimulation threshold, enhances insulin secretion, and increases dye coupling among islet B cells (1987) Endocrinology, 121, pp. 1447-1453
  • Soukas, A., Socci, N.D., Saatkamp, B.D., Novelli, S., Friedman, J.M., Distinct transcriptional profiles of adipogenesis in vivo and in vitro (2001) J Biol Chem, 276, pp. 34167-34174
  • Strain, A.J., Ingleton, P.M., Growth hormone- and prolactin-induced release of insulin-like growth factor by isolated rat hepatocytes (1990) Biochem Soc Trans, 18, p. 1206
  • Topping, D.L., Mayes, P.A., The immediate effects of insulin and fructose on the metabolism of the perfused liver. Changes in lipoprotein secretion, fatty acid oxidation and esterification, lipogenesis and carbohydrate metabolism (1972) Biochem J, 126, pp. 295-311
  • Uyeda, K., Repa, J.J., Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis (2006) Cell Metab, 4, pp. 107-110
  • Viengchareun, S., Bouzinba-Segard, H., Laigneau, J.P., Zennaro, M.C., Kelly, P.A., Bado, A., Lombès, M., Binart, N., Prolactin potentiates insulinstimulated leptin expression and release from differentiated brown adipocytes (2004) J Mol Endocrinol, 33, pp. 679-691
  • Wang, Y., Viscarra, J., Kim, S.J., Sul, H.S., Transcriptional regulation of hepatic lipogenesis (2015) Nat Rev Mol Cell Biol, 16, pp. 678-689
  • White, U.A., Stephens, J.M., Transcriptional factors that promote formation of white adipose tissue (2010) Mol Cell Endocrinol, 318, pp. 10-14
  • Wittmann, G., Liposits, Z., Lechan, R.M., Fekete, C., Medullary adrenergic neurons contribute to the neuropeptide Y-ergic innervation of hypophysiotropic thyrotropin-releasing hormone-synthesizing neurons in the rat (2002) Neurosci Lett, 324, pp. 69-73
  • Yahagi, N., Shimano, H., Hasty, A.H., Matsuzaka, T., Ide, T., Yoshikawa, T., Amemiya-Kudo, M., Yamada, N., Absence of sterol regulatory element-binding protein-1 (SREBP-1) ameliorates fatty livers but not obesity or insulin resistance in Lep(ob)/Lep(ob) mice (2002) J Biol Chem, 277, pp. 19353-19357
  • Yamashita, H., Takenoshita, M., Sakurai, M., Bruick, R.K., Henzel, W.J., Shillinglaw, W., Arnot, D., Uyeda, K., A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver (2001) Proc Natl Acad Sci USA, 98, pp. 9116-9121
  • Yavuz, D., Deyneli, O., Akpinar, I., Yildiz, E., Gözü, H., Sezgin, O., Haklar, G., Akalin, S., Endothelial function, insulin sensitivity and inflammatory markers in hyperprolactinemic pre-menopausal women (2003) Eur J Endocrinol, 149, pp. 187-193

Citas:

---------- APA ----------
Luque, G.M., Lopez-Vicchi, F., María Ornstein, A., Brie, B., De Winne, C., Fiore, E., Perez-Millan, M.I.,..., Becu-Villalobos, D. (2016) . Chronic hyperprolactinemia evoked by disruption of lactotrope dopamine d2 receptors impacts on liver and adipocyte genes related to glucose and insulin balance. American Journal of Physiology - Endocrinology and Metabolism, 311(6), E974-E988.
http://dx.doi.org/10.1152/ajpendo.00200.2016
---------- CHICAGO ----------
Luque, G.M., Lopez-Vicchi, F., María Ornstein, A., Brie, B., De Winne, C., Fiore, E., et al. "Chronic hyperprolactinemia evoked by disruption of lactotrope dopamine d2 receptors impacts on liver and adipocyte genes related to glucose and insulin balance" . American Journal of Physiology - Endocrinology and Metabolism 311, no. 6 (2016) : E974-E988.
http://dx.doi.org/10.1152/ajpendo.00200.2016
---------- MLA ----------
Luque, G.M., Lopez-Vicchi, F., María Ornstein, A., Brie, B., De Winne, C., Fiore, E., et al. "Chronic hyperprolactinemia evoked by disruption of lactotrope dopamine d2 receptors impacts on liver and adipocyte genes related to glucose and insulin balance" . American Journal of Physiology - Endocrinology and Metabolism, vol. 311, no. 6, 2016, pp. E974-E988.
http://dx.doi.org/10.1152/ajpendo.00200.2016
---------- VANCOUVER ----------
Luque, G.M., Lopez-Vicchi, F., María Ornstein, A., Brie, B., De Winne, C., Fiore, E., et al. Chronic hyperprolactinemia evoked by disruption of lactotrope dopamine d2 receptors impacts on liver and adipocyte genes related to glucose and insulin balance. Am. J. Physiol. Endocrinol. Metab. 2016;311(6):E974-E988.
http://dx.doi.org/10.1152/ajpendo.00200.2016