Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Relativistic and nonrelativistic calculations have been performed on hydrogen peroxide, dihydrogen disulfide, dihydrogen diselenide, and dihydrogen ditelluride, H2X2 (X = O, S, Se, Te), to investigate the consequences of relativistic effects on their structures as well as their nuclear magnetic resonance (NMR) spin–spin coupling constants and spin–spin coupling constant polarizabilites. The study has been performed using both one-component nonrelativistic and four-component relativistic calculations at the density functional theory (DFT) level with the B3LYP exchange-correlation functional. The calculation of nuclear spin–spin coupling constant polarizabilities has been performed by evaluating the components of the third order tensor, nuclear spin–spin coupling polarizability, using quadratic response theory. From this, the pseudoscalar associated with this tensor has also been calculated. The results show that relativistic corrections become very important for H2Se2 and H2Te2 and hint that a new chiral discrimination technique via NMR spectroscopy might be possible for molecules containing elements like Se or Te. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

Registro:

Documento: Artículo
Título:The influence of relativistic effects on nuclear magnetic resonance spin–spin coupling constant polarizabilities of H2O2, H2S2, H2Se2, and H2Te2
Autor:Pagola, G.I.; Larsen, M.A.B.; Ferraro, M.; Sauer, S.P.A.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, Pabellón 1, Buenos Aires, 1428, Argentina
Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø, DK-2100, Denmark
Palabras clave:Chiral discrimination; Electric dipole polarizability of nuclear spin-spin coupling; Nuclear magnetic resonance spectroscopy; Relativistic effects; spin-spin coupling constant; Density functional theory; Magnetism; Nuclear magnetic resonance; Nuclear magnetic resonance spectroscopy; Polarization; Relativity; Selenium compounds; Spin dynamics; Stereochemistry; Sulfur compounds; Tellurium compounds; Tensors; Chiral discrimination; Exchange-correlation functionals; Nonrelativistic calculations; Nuclear Magnetic Resonance (NMR); Nuclear spins; Relativistic calculations; Relativistic effects; Spin-spin coupling constants; Electron spin resonance spectroscopy
Año:2018
Volumen:39
Número:31
Página de inicio:2589
Página de fin:2600
DOI: http://dx.doi.org/10.1002/jcc.25648
Título revista:Journal of Computational Chemistry
Título revista abreviado:J. Comput. Chem.
ISSN:01928651
CODEN:JCCHD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01928651_v39_n31_p2589_Pagola

Referencias:

  • Parker, D., (1991) Chem. Rev., 91, p. 1441
  • Canet, I., Courtieu, J., Loewenstein, A., Meddour, A., Pechine, J.M., (1995) J. Am. Chem. Soc., 117, p. 6520
  • Raban, M., Mislow, K., (1965) Tetrahedron Lett., 6, p. 4249
  • Whitesides, G.M., Lewis, D.W., (1970) J. Am. Chem. Soc., 92, p. 6979
  • Buckingham, A., (2004) Chem. Phys. Lett., 398, p. 1
  • Buckingham, A., Fischer, P., (2006) Chem. Phys., 324, p. 111
  • Pelloni, S., Lazzeretti, P., Zanasi, R., (2007) J. Chem. Theory Comput., 3, p. 1691
  • Zanasi, R., Pelloni, S., Lazzeretti, P., (2007) J. Comput. Chem., 28, p. 2159
  • Pagola, G.I., Ferraro, M.B., Pelloni, S., Lazzeretti, P., Sauer, S.P.A., (2011) Theor. Chem. Acc., 129, p. 359
  • Kjær, H., Sauer, S.P.A., Kongsted, J., (2011) J. Comput. Chem., 32, p. 3168
  • Kjær, H., Nielsen, M.R., Pagola, G.I., Ferraro, M.B., Lazzeretti, P., Sauer, S.P.A., (2012) J. Comput. Chem., 33, p. 1845
  • Pelloni, S., Faglioni, F., Lazzeretti, P., (2013) Rend. Fis. Acc. Lincei, 24, p. 283
  • Komorovsky, S., Repisky, M., Ruud, K., Malkina, O.L., Malkin, V.G., (2013) J. Phys. Chem. A, 117, p. 14209. , (a)
  • Rusakov, Y.Y., Rusakova, I.L., Krivdin, L.B., (2014) Magn. Reson. Chem., 52, p. 214. , (b)
  • Rusakova, I.L., Rusakov, Y.Y., Krivdin, L.B., (2014) Magn. Reson. Chem., 52, p. 500. , (c)
  • Křístková, A., Komorovsky, S., Repisky, M., Malkin, V.G., Malkina, O.L., (2015) J. Chem. Phys., 142. , (d), 114102
  • Rusakov, Y.Y., Krivdin, L.B., (2015) J. Comput. Chem., 36, p. 1756. , (e)
  • Rusakova, I.L., Rusakov, Y.Y., Krivdin, L.B., (2016) J. Comput. Chem., 37, p. 1367. , (f)
  • Jankowska, M., Kupka, T., Stobiński, L., Faber, R., Lacerda, E.G., Jr., Sauer, S.P.A., (2016) J. Comput. Chem., 37, p. 395. , (g)
  • Rusakova, I.L., Rusakov, Y.Y., Krivdin, L.B., (2017) J. Phys. Chem. A, 121, p. 4793. , (h)
  • Rusakova, I.L., Rusakov, Y.Y., Krivdin Russ, L.B., (2016) Chem. Rev., 85, p. 356. , i
  • Rusakova, I.L., Krivdin, L.B., (2018) Mendeleev Commun., 28, p. 1. , (j)
  • Lacerda, E.G., Jr., Sauer, S.P.A., Mikkelsen, K.V., Coutinho, K., Canuto, S., (2018) J. Mol. Model., 24, p. 62. , (k)
  • Mills, I., Cvitas, T., Homann, K., Kallay, N., Kuchitsu, K., (1993) Quantities, Units and Symbols in Physical Chemistry, , Blackwell Scientific Publications, Oxford
  • Ramsey, N.F., (1953) Phys. Rev., 91, p. 303
  • Sauer, S.P.A., (2011) Molecular Electromagnetism, , Oxford University Press, Oxford
  • Pagola, G.I., Caputo, M.C., Ferraro, M.B., Lazzeretti, P., (2006) Phys. Rev. A, 74, p. 022509
  • Sauer, S.P.A., (1993) J. Chem. Phys., 98, p. 9220. , (a)
  • Lazzeretti, P., (2012) J. Chem. Phys., 137, p. 74108. , (b)
  • Helgaker, T., Jaszuński, M., Ruud, K., (1999) Chem. Rev., 99, p. 293
  • Aucar, G.A., Oddershede, J., (1993) Int. J. Quantum Chem., 47, p. 425. , (a)
  • Aucar, G.A., Saue, T., Visscher, L., Jensen, H.J.A., (1999) J. Chem. Phys., 110, p. 6208. , (b)
  • Saue, T., Jensen, H.J.A., (2003) J. Chem. Phys., 118, p. 522
  • Visscher, L., Enevoldsen, T., Saue, T., Jensen, H.J.A., Oddershede, J., (1999) J. Comput. Chem., 20, p. 1262
  • Norman, P., Jensen, H.J.A., (2004) J. Chem. Phys., 121, p. 6154
  • Henriksson, J., Saue, T., Norman, P., (2008) J. Chem. Phys., 128. , 024105
  • Olsen, J., Jørgensen, P., (1985) J. Chem. Phys., 82, p. 3235
  • Christiansen, O., Jørgensen, P., Hättig, C., (1998) Int. J. Quantum Chem., 68, p. 1
  • Hettema, H., Aa, H.J., Jensen, P.J., Olsen, J., (1992) J. Chem. Phys, 97, p. 1174
  • Vahtras, O., Ågren, H., Jørgensen, P., Jensen, H.J.A., Padkjær, S.B., Helgaker, T., (1992) J. Chem. Phys., 96, p. 6120
  • Helgaker, T., Watson, M., Handy, N.C., (2000) J. Chem. Phys., 113, p. 9402
  • Saue, T., Fægri, K., Jr., Helgaker, T., Gropen, O., (1997) Mol. Phys., 91, p. 937
  • Dyall, K.G., Faegri, K., Jr., (2007) Introduction to Relativistic Quantum Chemistry, , Oxford University Press, Oxford
  • Saue, T., Jensen, H.J.A., (1999) J. Chem. Phys., 111, p. 6211
  • A Relativistic Ab Initio Electronic Structure Program (2014) Release DIRAC14, , http://www.diracprogram.org, Available at
  • Bast, T.S., Visscher, H.J.A., Jensen, V., Bakken, K.G., Dyall, S., Dubillard, U., Ekstroem, E., Wintheryamamoto, S., (2015) DIRAC, a Relativistic Ab Initio Electronic Structure Dent. Prog, , http://www.diracprogram.org, with contributions from, Release DIRAC15
  • Aidas, K., Angeli, C., Bak, K.L., Bakken, V., Bast, R., Boman, L., Christiansen, O., Ågren, H., (2014) WIREs Comput. Mol. Sci., 4, p. 269
  • Dyall, K.G., (1998) Theor. Chem. Acc., 99, p. 366. , (a)
  • Dyall, K.G., (2002) Theor. Chem. Acc., 108, p. 335. , (b)
  • Dyall, K.G., (2002) Theor. Chem. Acc., 108, p. 365. , (c)
  • Dyall, K.G., (2004) Theor. Chem. Acc., 112, p. 403. , (d)
  • Dyall, K.G., (2006) Theor. Chem. Acc., 115, p. 441. , (e)
  • Dyall, K.G., (2007) Theor. Chem. Acc., 117, p. 483. , (f)
  • Dyall, K.G., (2007) Theor. Chem. Acc., 117, p. 491. , (g)
  • Dyall, K.G., (2009) J. Phys. Chem. A., 113, p. 12638. , (h)
  • Dyall, K.G., Gomes, A.S.P., (2009) Theor. Chem. Acc., 125, p. 97. , (i)
  • Dyall, K.G., (2011) Theor. Chem. Acc., 129, p. 603. , (j)
  • Dyall, K.G., (2012) Theor. Chem. Acc., 131, p. 1172. , (k)
  • Dyall, K.G., (2012) Theor. Chem. Acc., 131, p. 1217. , (l)
  • Dyall, K.G., (2016) Theor. Chem. Acc., 135, p. 128. , (m)
  • Provasi, P.F., Aucar, G.A., Sauer, S.P.A., (2001) J. Chem. Phys., 115, p. 1324. , (a)
  • Barone, V., Provasi, P.F., Peralta, J.E., Snyder, J.P., Sauer, S.P.A., Contreras, R.H., (2003) J. Phys. Chem. A, 107, p. 4748. , (b)
  • Provasi, P.F., Sauer, S.P.A., (2010) J. Chem. Phys., 133, p. 054308. , (c)
  • Rusakov, Y.Y., Krivdin, L.B., Sauer, S.P.A., Levanova, E.P., Levkovskaya, G.G., (2010) Magn. Res. Chem., 48, p. 44. , (d)
  • Hedegård, E.D., Kongsted, J., Sauer, S.P.A., (2011) J. Chem. Theory Comput., 7, p. 4077. , (e)
  • Jensen, F., (2006) J. Chem. Theory Comput., 2, p. 1360. , (a)
  • Jensen, F., (2010) Theor. Chem. Acc., 126, p. 371. , (b)
  • Aggelund, P.A., Sauer, S.P.A., Jensen, F., (2018) J. Chem. Phys., 149, p. 044117. , (c)
  • Rusakov, Y.Y., Krivdin, L.B., Østerstrøm, F.F., Sauer, S.P.A., Potapov, V.A., Amosova, S.V., (2013) Phys. Chem. Chem. Phys., 15, p. 13101
  • Dohn, A.O., Møller, K.B., Sauer, S.P.A., (2013) Curr. Inorg. Chem., 3, p. 213
  • Sauer, S.P.A., Raynes, W.T., (2000) J. Chem. Phys., 113, p. 3121
  • Burke, V., Grant, I., (1967) Proc. Phys. Soc., 90, p. 297
  • Ziegler, T., Snijders, J.G., Baerends, E.J., (1980) Chem. Phys. Lett., 75, p. 1. , (a)
  • Snijders, J.G., Pyykkö, P., (1980) Chem. Phys. Lett., 75, p. 5. , (b)
  • Redington, R.L., Olson, W.B., Cross, P.C., (1962) J. Chem. Phys., 36, p. 1311
  • Behrend, J., Mittler, P., Winnewisser, G., Yamada, K., (1991) J. Mol. Spectrosc., 150, p. 99
  • Faber, R., Kaminsky, J., Sauer, S.P.A., (2016), pp. 218-266. , (a), In Gas Phase NMR, Royal Society of Chemistry Cambridge;, K. Jackowski, M. Jaszuński, Eds.;, Ch. 7; Wigglesworth, R.D., Raynes, W.T., Kirpekar, S., Oddershede, J., Sauer, S.P.A., (2000) J. Chem. Phys., 112, p. 736. , (b)
  • Wigglesworth, R.D., Raynes, W.T., Kirpekar, S., Oddershede, J., Sauer, S.P.A., (2001) J. Chem. Phys., 114, p. 9192. , (c)
  • Faber, R., Sauer, S.P.A., (2012) Phys. Chem. Chem. Phys., 14, p. 16440. , (d)
  • Faber, R., Sauer, S.P.A., (e), AIP Conf. Proc. 2015, 1702, 090035; Wigglesworth, R.D., Raynes, W.T., Sauer, S.P.A., Oddershede, J., (1997) Mol. Phys., 92, p. 77. , (a)
  • Ruud, K., Frediani, L., Cammi, R., Mennucci, B., (2013) Int. J. Mol. Sci., 4, p. 119. , (a)
  • Pecul, M., Ruud, K., (2004) Magn. Reson. Chem., 42, p. S128. , (b)
  • Møgelhøj, A., Aidas, K., Mikkelsen, K.V., Sauer, S.P.A., Kongsted, J., (2009) J. Chem. Phys., 130. , 134508

Citas:

---------- APA ----------
Pagola, G.I., Larsen, M.A.B., Ferraro, M. & Sauer, S.P.A. (2018) . The influence of relativistic effects on nuclear magnetic resonance spin–spin coupling constant polarizabilities of H2O2, H2S2, H2Se2, and H2Te2. Journal of Computational Chemistry, 39(31), 2589-2600.
http://dx.doi.org/10.1002/jcc.25648
---------- CHICAGO ----------
Pagola, G.I., Larsen, M.A.B., Ferraro, M., Sauer, S.P.A. "The influence of relativistic effects on nuclear magnetic resonance spin–spin coupling constant polarizabilities of H2O2, H2S2, H2Se2, and H2Te2" . Journal of Computational Chemistry 39, no. 31 (2018) : 2589-2600.
http://dx.doi.org/10.1002/jcc.25648
---------- MLA ----------
Pagola, G.I., Larsen, M.A.B., Ferraro, M., Sauer, S.P.A. "The influence of relativistic effects on nuclear magnetic resonance spin–spin coupling constant polarizabilities of H2O2, H2S2, H2Se2, and H2Te2" . Journal of Computational Chemistry, vol. 39, no. 31, 2018, pp. 2589-2600.
http://dx.doi.org/10.1002/jcc.25648
---------- VANCOUVER ----------
Pagola, G.I., Larsen, M.A.B., Ferraro, M., Sauer, S.P.A. The influence of relativistic effects on nuclear magnetic resonance spin–spin coupling constant polarizabilities of H2O2, H2S2, H2Se2, and H2Te2. J. Comput. Chem. 2018;39(31):2589-2600.
http://dx.doi.org/10.1002/jcc.25648