Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In the presence of a static, nonhomogeneous magnetic field, represented by the axial vector B at the origin of the coordinate system and by the polar vector C=∇×B, assumed to be spatially uniform, the chiral molecules investigated in this paper carry an orbital electronic anapole, described by the polar vector A. The electronic interaction energy of these molecules in nonordered media is a cross term, coupling B and C via ā, one third of the trace of the anapole magnetizability aαβ tensor, that is, WBC=-āB·C. Both A and WBC have opposite sign in the two enantiomeric forms, a fact quite remarkable from the conceptual point of view. The magnitude of ā predicted in the present computational investigation for five chiral molecules is very small and significantly biased by electron correlation contributions, estimated at the density functional level via three different functionals. © 2016 Wiley Periodicals, Inc.

Registro:

Documento: Artículo
Título:Computational study of basis set and electron correlation effects on anapole magnetizabilities of chiral molecules
Autor:Zarycz, N.; Provasi, P.F.; Pagola, G.I.; Ferraro, M.B.; Pelloni, S.; Lazzeretti, P.
Filiación:Departamento de Física, Northeastern University, Av. Libertad 5500, Corrientes, W3400 AAS, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales, IFIBA, CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Pab. I, (1428), Buenos Aires, Argentina
Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 213/b, Modena, 41125, Italy
Palabras clave:anapole magnetizabilities; electron correlation effects; higher magnetizability tensors; magnetic response properties; molecules in a magnetic field with uniform gradient; Correlation detectors; Electron correlations; Magnetic field effects; Molecular mechanics; Molecules; Tensors; Computational investigation; Density-functional level; Electron correlation contribution; Electron correlation effect; Magnetic response; Magnetizabilities; Nonhomogeneous magnetic field; Uniform gradient; Stereochemistry
Año:2016
Volumen:37
Número:17
Página de inicio:1552
Página de fin:1558
DOI: http://dx.doi.org/10.1002/jcc.24369
Título revista:Journal of Computational Chemistry
Título revista abreviado:J. Comput. Chem.
ISSN:01928651
CODEN:JCCHD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01928651_v37_n17_p1552_Zarycz

Referencias:

  • Lazzeretti, P., (1993) Theor. Chim. Acta, 87, p. 59
  • Caputo, M.C., Ferraro, M.B., Lazzeretti, P., Malagoli, M., Zanasi, R., (1994) J. Mol. Struct. (Theochem), 305, p. 89
  • Faglioni, F., Ligabue, A., Pelloni, S., Soncini, A., Lazzeretti, P., (2004) Chem. Phys., 304, p. 289
  • Pelloni, S., Lazzeretti, P., Monaco, G., Zanasi, R., (2011) Rend. Lincei., 22, p. 105
  • Provasi, P.F., Pagola, G.I., Ferraro, M.B., Pelloni, S., Lazzeretti, P., (2014) J. Phys. Chem. A, 118, p. 6333
  • Pagola, G.I., Ferraro, M.B., Provasi, P.F., Pelloni, S., Lazzeretti, P., (2014) J. Chem. Phys., 141, p. 094305. , See supplementary material at http://dx.doi.org/ 10.1063/1.4893991 for details of the basis set convergence test
  • Tellgren, E.I., Fliegl, H., (2013) J. Chem. Phys., 139, p. 164118
  • Tellgren, E.I., Teale, A.M., Furness, J.W., Lange, K.K., Ekström, U., Helgaker, T., (2014) J. Chem. Phys., 140, p. 034101
  • Tellgren, E.I., Soncini, A., Helgaker, T., (2008) J. Chem. Phys., 129, p. 154114
  • Tellgren, E.I., Soncini, A., Helgaker, T., (2009) Phys. Chem. Chem. Phys., 11, p. 5489
  • Pagola, G.I., Caputo, M.C., Ferraro, M.B., Lazzeretti, P., (2004) J. Chem. Phys., 120, p. 9556
  • Pagola, G.I., Caputo, M.C., Ferraro, M.B., Lazzeretti, P., (2005) Phys. Rev. A, 72, p. 033401
  • Pagola, G.I., Caputo, M.C., Ferraro, M.B., Lazzeretti, P., (2005) J. Chem. Phys., 122, p. 074318
  • Stopkowicz, S., Gauss, J., Lange, K.K., Tellgren, E.I., Helgaker, T., (2015) J. Chem. Phys., 143, p. 074110
  • Adamowicz, L., Tellgren, E.I., Helgaker, T., (2015) Chem. Phys. Lett., 639, p. 295
  • Pedersen, T.B., Koch, H., (1997) J. Chem. Phys., 106, p. 8059
  • Pedersen, T.B., Fernández, B., Koch, H., (2001) J. Chem. Phys., 114, p. 6983
  • Ruud, K., Stephens, P.J., Devlin, F.J., Taylor, P.R., Cheeseman, J.R., Frisch, M.J., (2003) Chem. Phys. Lett., 373, p. 606
  • Ruud, K., Helgaker, T., Jørgensen, P., (1997) J. Chem. Phys., 107, p. 10599
  • Mohr, P.J., Taylor, B.N., Newell, D.B., (2008) Rev. Mod. Phys., 80, p. 633
  • Lazzeretti, P., Malagoli, M., Zanasi, R., (1994) Chem. Phys. Lett., 220, p. 299
  • Bloch, F., (1961) W. Heisenberg und Die Physik Unserer Zeit, pp. 93-102. , F. Bopp, Ed.; Friedr. Wieveg & Son: Braunschweig
  • Lazzeretti, P., (1989) Adv. Chem. Phys., 75, p. 507
  • Lazzeretti, P., (2003) Handbook of Molecular Physics and Quantum Chemistry, pp. 53-145. , 3, Part 1, Chapter 3; S. Wilson, Ed.; Wiley: Chichester
  • Pelloni, S., Lazzeretti, P., (2014) J. Chem. Phys., 140, p. 074105
  • Zanasi, R., Pelloni, S., Lazzeretti, P., (2007) J. Comput. Chem., 28, p. 2159
  • Buckingham, A.D., Lazzeretti, P., Pelloni, S., (2015) Mol. Phys., 113, p. 1780
  • Jørgensen, P., Simons, J., (1981) Second Quantization-Based Method in Quantum Chemistry, , Academic Press: New York
  • Keal, W., Tozer, D.J., (2003) J. Chem. Phys., 119, p. 3015
  • Becke, A.D., (1993) J. Chem. Phys., 98, p. 5648
  • Yanai, T., Tew, D.P., Handy, N.C., (2004) Chem. Phys. Lett., 393, p. 51
  • (2005) An Electronic Structure Program, Release 2.0, , http://www.kjemi.uio.no/software/dalton, DALTON
  • Dunning, T.H., Jr., (1989) J. Chem. Phys., 90, p. 1007
  • Kendall, R.A., Dunning, T.H., Jr., Harrison, R.J., (1992) J. Chem. Phys., 96, p. 6796
  • Woon, D.E., Dunning, T.H., Jr., (1993) J. Chem. Phys., 98, p. 1358
  • Pelloni, S., Faglioni, F., Lazzeretti, P., (2013) Rendiconti Lincei, 24, p. 283
  • Pelloni, S., Lazzeretti, P., (2013) Mol. Phys., 111, p. 2387
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Pople, J.A., (2003) Gaussian 2003, Revision B.05, , Gaussian, Inc.: Pittsburgh PA
  • Monaco, G., Zanasi, R., Pelloni, S., Lazzeretti, P., (2010) J. Chem. Theor. Comput., 6, p. 3343
  • Moccia, R., (1970) Chem. Phys. Lett., 5, p. 265
  • Berger, R., Naturforsch, Z., (2012), 67 B, p. 1127

Citas:

---------- APA ----------
Zarycz, N., Provasi, P.F., Pagola, G.I., Ferraro, M.B., Pelloni, S. & Lazzeretti, P. (2016) . Computational study of basis set and electron correlation effects on anapole magnetizabilities of chiral molecules. Journal of Computational Chemistry, 37(17), 1552-1558.
http://dx.doi.org/10.1002/jcc.24369
---------- CHICAGO ----------
Zarycz, N., Provasi, P.F., Pagola, G.I., Ferraro, M.B., Pelloni, S., Lazzeretti, P. "Computational study of basis set and electron correlation effects on anapole magnetizabilities of chiral molecules" . Journal of Computational Chemistry 37, no. 17 (2016) : 1552-1558.
http://dx.doi.org/10.1002/jcc.24369
---------- MLA ----------
Zarycz, N., Provasi, P.F., Pagola, G.I., Ferraro, M.B., Pelloni, S., Lazzeretti, P. "Computational study of basis set and electron correlation effects on anapole magnetizabilities of chiral molecules" . Journal of Computational Chemistry, vol. 37, no. 17, 2016, pp. 1552-1558.
http://dx.doi.org/10.1002/jcc.24369
---------- VANCOUVER ----------
Zarycz, N., Provasi, P.F., Pagola, G.I., Ferraro, M.B., Pelloni, S., Lazzeretti, P. Computational study of basis set and electron correlation effects on anapole magnetizabilities of chiral molecules. J. Comput. Chem. 2016;37(17):1552-1558.
http://dx.doi.org/10.1002/jcc.24369