Artículo

Schreurs, G.; Buiter, S.J.H.; Boutelier, J.; Burberry, C.; Callot, J.-P.; Cavozzi, C.; Cerca, M.; Chen, J.-H.; Cristallini, E.; Cruden, A.R.; Cruz, L.; Daniel, J.-M.; Da Poian, G.; Garcia, V.H.; Gomes, C.J.S.; Grall, C.; Guillot, Y.; Guzmán, C. (...) Yamada, Y. "Benchmarking analogue models of brittle thrust wedges" (2016) Journal of Structural Geology. 92:116-139
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We performed a quantitative comparison of brittle thrust wedge experiments to evaluate the variability among analogue models and to appraise the reproducibility and limits of model interpretation. Fifteen analogue modeling laboratories participated in this benchmark initiative. Each laboratory received a shipment of the same type of quartz and corundum sand and all laboratories adhered to a stringent model building protocol and used the same type of foil to cover base and sidewalls of the sandbox. Sieve structure, sifting height, filling rate, and details on off-scraping of excess sand followed prescribed procedures. Our analogue benchmark shows that even for simple plane-strain experiments with prescribed stringent model construction techniques, quantitative model results show variability, most notably for surface slope, thrust spacing and number of forward and backthrusts. One of the sources of the variability in model results is related to slight variations in how sand is deposited in the sandbox. Small changes in sifting height, sifting rate, and scraping will result in slightly heterogeneous material bulk densities, which will affect the mechanical properties of the sand, and will result in lateral and vertical differences in peak and boundary friction angles, as well as cohesion values once the model is constructed. Initial variations in basal friction are inferred to play the most important role in causing model variability. Our comparison shows that the human factor plays a decisive role, and even when one modeler repeats the same experiment, quantitative model results still show variability. Our observations highlight the limits of up-scaling quantitative analogue model results to nature or for making comparisons with numerical models. The frictional behavior of sand is highly sensitive to small variations in material state or experimental set-up, and hence, it will remain difficult to scale quantitative results such as number of thrusts, thrust spacing, and pop-up width from model to nature. © 2016 Elsevier Ltd

Registro:

Documento: Artículo
Título:Benchmarking analogue models of brittle thrust wedges
Autor:Schreurs, G.; Buiter, S.J.H.; Boutelier, J.; Burberry, C.; Callot, J.-P.; Cavozzi, C.; Cerca, M.; Chen, J.-H.; Cristallini, E.; Cruden, A.R.; Cruz, L.; Daniel, J.-M.; Da Poian, G.; Garcia, V.H.; Gomes, C.J.S.; Grall, C.; Guillot, Y.; Guzmán, C.; Hidayah, T.N.; Hilley, G.; Klinkmüller, M.; Koyi, H.A.; Lu, C.-Y.; Maillot, B.; Meriaux, C.; Nilfouroushan, F.; Pan, C.-C.; Pillot, D.; Portillo, R.; Rosenau, M.; Schellart, W.P.; Schlische, R.W.; Take, A.; Vendeville, B.; Vergnaud, M.; Vettori, M.; Wang, S.-H.; Withjack, M.O.; Yagupsky, D.; Yamada, Y.
Filiación:Institute of Geological Sciences, University of Bern, Baltzerstrasse 1 & 3, Bern, CH 3012, Switzerland
Geodynamics Team, Geological Survey of Norway, Trondheim, 7491, Norway
The Centre for Earth Evolution and Dynamics, University of Oslo, PO Box 1048, Blindern, Oslo 0316, Norway
Department of Geology, University of Toronto, 22 Russell St., Toronto, Ontario M5S 3B1, Canada
Hans Ramberg Tectonic Laboratory, Department of Earth Sciences, Uppsala University, Villavägen, Uppsala S-75326, Sweden
IFP Energies Nouvelles, 1 et 4 avenue de Bois Préau, Rueil Malmaison, Cedex F-92500, France
NEXT – Natural and Experimental Tectonics Research Group, Department of Physics and Earth Sciences “Macedonio Melloni”, University of Parma, Via G. Usberti 157/A, Parma, I-43100, Italy
Universidad Nacional Autonoma de Mexico, Centro de Geociencias, Blvd Juriquilla 3001, Juriquilla, Queretaro 76230, Mexico
Department of Geosciences, National Taiwan University, 1 Roosevelt Road Section 4Taipei 106, Taiwan
Departamento de Ciencias Geológicas, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
Department of Geological and Environmental Sciences, Stanford University, Braun Hall 215, Stanford, CA 94305-2115, United States
Departamento de Geologia, Universidade Federal de Ouro Preto, Morro do Cruzeiro s/n, 35, Ouro Preto, Minas Gerais 400-000, Brazil
Université Lille-Nord de France, Laboratoire Géosystèmes, FRE CNRS 3298, Villeneuve d'Ascq, Cedex 59655, France
Department of Earth and Planetary Sciences, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854-8066, United States
Department of Geological and Environmental Sciences, Stanford University, Braun Hall 233, Stanford, CA 94305-2115, United States
Department of Geosciences, National Taiwan University, 1 Roosevelt Road, Taipei, 106, Taiwan
Laboratoire Géosciences et Environnement Cergy, Université de Cergy-Pontoise, 5 Mail Gay-Lussac, Neuville-sur-Oise, Cergy-Pontoise, Cedex 95031, France
School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria 3800, Australia
Helmholtz-Centre Potsdam, GFZ German Research Centre for Geosciences, Telegrafenberg, Potsdam D-14473, Germany
Department of Civil Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada
Université Lille, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Lille, F 59000, France
Department of Civil and Earth Resources Engineering, Kyoto University, Kyoto, 615-8540, Japan
Palabras clave:Analogue modeling; Benchmarking; Brittle wedges; Cohesion; Critical taper; Friction; Sand; Shear zones; Thrust wedges; Adhesion; Benchmarking; Friction; Strain; Tribology; Analogue modeling; Brittle wedges; Cohesion; Critical taper; Shear zone; Thrust wedges; Sand; analog model; benchmarking; cohesion; friction; numerical model; sand; shear zone; thrust
Año:2016
Volumen:92
Página de inicio:116
Página de fin:139
DOI: http://dx.doi.org/10.1016/j.jsg.2016.03.005
Título revista:Journal of Structural Geology
Título revista abreviado:J. Struct. Geol.
ISSN:01918141
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01918141_v92_n_p116_Schreurs

Referencias:

  • Adam, J., Urai, J.L., Wieneke, B., Oncken, O., Pfeiffer, K., Kukowski, N., Lohrmann, J., Schmatz, J., Shear localisation and strain distribution during tectonic faulting – new insights from granular-flow experiments and high-resolution optical image correlation techniques (2005) J. Struct. Geol., 27, pp. 283-301
  • Adam, J., Klinkmüller, M., Schreurs, G., Wieneke, B., Quantitative 3D strain analysis in analogue experiments simulating tectonic deformation: integration of X-ray computed tomography and digital volume correlation techniques (2013) J. Struct. Geol., 55, pp. 127-149
  • Bernard, S., Avouac, J.-P., Dominguez, S., Simoes, M., Kinematics of fault-related folding derived from a sandbox experiment (2007) J. Geophys. Res., 112, p. B03S12
  • Buiter, S.J.H., A review of brittle compressional wedge models (2012) Tectonophysics, 530-531, pp. 1-17
  • Buiter, S.J.H., Schreurs, G., Albertz, M., Gerya, T.V., Kaus, B., Landry, W., Le Pourhiet, L., Beaumont, C., Benchmarking numerical models of brittle thrust wedges (2016) J. Struct. Geology, , http://dx.doi.org/10.1016/j.jsg.2016.03.003
  • Colletta, B., Bale, P., Ballard, J.F., Letouzey, J., Pinedo, R., Computerized Y-ray tomography analysis of sandbox models: examples of thin-skinned thrust systems (1991) Geology, 19, pp. 1063-1067
  • Costa, E., Vendeville, B., Experimental insights on the geometry and kinematics of fold-and-thrust belts above weak, viscous evaporitic décollement: reply to comments by Hemin Koyi and James Cotton (2004) J. Struct. Geol., 26, pp. 2139-2143
  • Cubas, N., Maillot, B., Barnes, C., Statistical analysis of an experimental compressional sand wedge (2010) J. Struct. Geol., 32, pp. 818-831
  • Dahlen, F.A., Suppe, J., Davis, D., Mechanics of fold-and-thrust belts and accretionary wedges: cohesive Coulomb theory (1984) J. Geophys. Res., 89, pp. 10087-10101
  • Davis, D., Suppe, J., Dahlen, F.A., Mechanics of fold-and-thrust belts and accretionary wedges (1983) J. Geophys. Res., 88, pp. 1153-1172
  • Forsyth, A.J., Hutton, S., Rhodes, M.J., Effect of cohesive interparticle force on the flow characteristics of granular materials (2002) Powder Technol., 126, pp. 150-154
  • Gomes, C.J.S., Investigating new materials in the context of analog-physical models (2013) J. Struct. Geol., 46, pp. 158-166
  • Huiqi, L., McClay, K.R., Powell, D., Physical models of thrust wedges (1992) Thrust Tectonics, pp. 71-81. , K.R. McClay Chapmann & Hall London
  • Krantz, R.W., Measurements of friction coefficients and cohesion for faulting and fault reactivation in laboratory models using sand and sand mixtures (1991) Tectonophysics, 202, pp. 319-333
  • Lohrmann, J., Kukowski, N., Adam, J., Oncken, O., The impact of analogue material properties on the geometry, kinematics, and dynamics of convergent sand wedges (2003) J. Struct. Geol., 25, pp. 1691-1711
  • Maillot, B., A sedimentation device to produce uniform sand packs (2013) Tectonophysics, 593, pp. 85-94
  • Mary, B.C., Maillot, B., Leroy, Y.M., Deterministic chaos in frictional wedges revealed by convergence analysis (2013) Int. J. Numer. Anal. Methods Geomech.
  • Mary, B.C., Maillot, B., Leroy, Y.M., Predicting orogenic wedge styles as a function of analogue erosion law and material softening (2013) Geochem. Geophys. Geosyst., 14
  • Panien, M., Schreurs, G., Pfiffner, O.A., Mechanical behaviour of granular materials used in analogue modeling: insights from grain characterisation, ring-shear tests and sandbox tests (2006) J. Struct. Geol., 28, pp. 1710-1724
  • Rosenau, M., Lohrmann, J., Oncken, O., Shocks in a box: an analogue model of subduction earthquake cycles with application to seismotectonic forearc evolution (2009) J. Geophys. Res., 114, p. B1
  • Schellart, W.P., Shear test results for cohesion and friction coefficients for different granular materials: scaling implications for their usage in analogue modeling (2000) Tectonophysics, 324, pp. 1-16
  • Schreurs, G., Buiter, S.J.H., Boutelier, D., Corti, G., Costa, E., Cruden, A., Daniel, J.-M., Nilforoushan, F., Analogue benchmarks of shortening and extension experiments (2006) Analogue and Numerical Modeling of Crustal-scale Processes, Special Publications, 253, pp. 1-25. , S.J.H. Buiter G. Schreurs Geological Society London
  • Schulze, D., Pulver und Schüttgüter – Fliesseigenschaften und Handhabung (2008), Springer Berlin; Stockmal, G.S., CBeaumont, C., Nguyen, M., Lee, B., Mechanics of thin-skinned fold-and-thrust belts: insights from numerical models (2007) Geol. Soc. Am. Spec. Pap., 433, pp. 63-98
  • Souloumiac, P., Krabbenhoft, K., Leroy, Y.M., Maillot, B., Failure in accretionary wedges with the maximum strength theorem: numerical algorithm and 2D validation (2010) Comput. Geosci.
  • Souloumiac, P., Maillot, B., Leroy, Y.M., Bias due to side wall friction in sand box experiments (2012) J. Struct. Geol., 35, pp. 90-101
  • Zhao, W.-L., Davis, D.M., Dahlen, F.A., Suppe, J., Origin of convex accretionary wedges: evidence from Barbados (1986) J. Geophys. Res., 91, pp. 10246-10258

Citas:

---------- APA ----------
Schreurs, G., Buiter, S.J.H., Boutelier, J., Burberry, C., Callot, J.-P., Cavozzi, C., Cerca, M.,..., Yamada, Y. (2016) . Benchmarking analogue models of brittle thrust wedges. Journal of Structural Geology, 92, 116-139.
http://dx.doi.org/10.1016/j.jsg.2016.03.005
---------- CHICAGO ----------
Schreurs, G., Buiter, S.J.H., Boutelier, J., Burberry, C., Callot, J.-P., Cavozzi, C., et al. "Benchmarking analogue models of brittle thrust wedges" . Journal of Structural Geology 92 (2016) : 116-139.
http://dx.doi.org/10.1016/j.jsg.2016.03.005
---------- MLA ----------
Schreurs, G., Buiter, S.J.H., Boutelier, J., Burberry, C., Callot, J.-P., Cavozzi, C., et al. "Benchmarking analogue models of brittle thrust wedges" . Journal of Structural Geology, vol. 92, 2016, pp. 116-139.
http://dx.doi.org/10.1016/j.jsg.2016.03.005
---------- VANCOUVER ----------
Schreurs, G., Buiter, S.J.H., Boutelier, J., Burberry, C., Callot, J.-P., Cavozzi, C., et al. Benchmarking analogue models of brittle thrust wedges. J. Struct. Geol. 2016;92:116-139.
http://dx.doi.org/10.1016/j.jsg.2016.03.005