Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A combined fluid inclusion and microstructural study was carried out in beryl crystals from the San Cayetano Nb-Ta-bearing pegmatite (San Luis, Argentina). Primary aqueous-carbonic fluids (T0) were subsequently re-trapped during shearing, resulting in en-échelon microfractures. The more brittle behaviour of beryl compared to quartz makes this mineral more suitable for the preservation of fluid inclusions and microstructures. The primary inclusions T0 are preserved in strain-free domains, whereas the pseudo-secondary T1-to T3-type inclusions occur in domains showing intracrystalline deformation. CO2 was relatively immobile or reacted to form carbonate in early T1-type inclusions, whereas H2O preferentially migrated along microfractures and was trapped as T2-and T3-type inclusions. Short intragranular trails of fluid inclusions, representing en-échelon healed microfractures, resulted from progressive strain localization. Contrary to previous proposals, this new model implies the progressive thickness reduction of intracrystalline micro-shear zones. Besides, hydrolytic weakening linked to dislocation glide is the most likely mechanism to explain the evolution of fluid inclusions, with intracrystalline deformation enhancing anisotropic diffusion. This study highlights the potential of combined fluid inclusion and microstructural studies in order to understand the interaction between fluid activity and deformation. In this way, valuable insights can be provided into the progressive development of overprinted fabrics and low-to medium-temperature deformation mechanisms of minerals. © 2018

Registro:

Documento: Artículo
Título:Development of sigmoidal en-échelon microfractures in beryl and the role of strain localization evidenced by fluid inclusions
Autor:Sosa, G.M.; Oriolo, S.; van den Kerkhof, A.
Filiación:Geoscience Center of the University of Goettingen, Goldschmidtstrasse 3, Goettingen, D-37077, Germany
CONICET - Universidad de Buenos Aires. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires (IGEBA), Intendente Güiraldes 2160, Buenos Aires, C1428EHA, Argentina
Palabras clave:Crack initiation; Fluid inclusions; Fluid-deformation interaction; Healed microfractures; Hydrolytic weakening; Shear zone thickness; Crack initiation; Deformation; Dislocations (crystals); Mineralogy; Silicate minerals; Deformation interactions; Fluid inclusion; Hydrolytic weakening; Microfractures; Shear zone; Diffusion in liquids; beryl; crack propagation; deformation; en echelon structure; fluid inclusion; fracture; shear zone; strain; Chelon
Año:2018
Volumen:115
Página de inicio:297
Página de fin:303
DOI: http://dx.doi.org/10.1016/j.jsg.2018.04.005
Título revista:Journal of Structural Geology
Título revista abreviado:J. Struct. Geol.
ISSN:01918141
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01918141_v115_n_p297_Sosa

Referencias:

  • Anders, M.H., Laubach, S.E., Scholz, C.H., Microfractures: a review (2014) J. Struct. Geol., 69, pp. 377-394
  • Bakker, R.J., Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties (2003) Chem. Geol., 194, pp. 3-23
  • Bakker, R.J., Reequilibration of fluid inclusions: bulk-diffusion (2009) Lithos, 112, pp. 277-288
  • Bakker, R.J., Jansen, J.B.H., Preferential water leakage from fluid inclusions by means of mobile dislocations (1990) Nature, 345, pp. 58-60
  • Bakker, R.J., Jansen, J.H.B., A mechanism for preferential H2O leakage from fluid inclusions in quartz, based on TEM observations (1994) Contrib. Mineral. Pet., 116, pp. 7-20
  • Baumgartner, M., Bakker, R.J., Doppler, G., Re-equilibration of natural H2O-CO2-salt-rich fluid inclusions in quartz – Part 1: experiments in pure water at constant pressures and differential pressures at 600°C (2014) Contrib. Mineral. Pet., 168, p. 1017
  • Beach, A., The geometry of en-echelon vein arrays (1975) Tectonophysics, 28, pp. 245-263
  • Bodnar, R.J., Introduction to aqueous electrolyte fluid inclusions (2003) Fluid Inclusions: Analysis and Interpretation, 32, pp. 81-100. , I. Samson A. Anderson D. Marshall Mineralogical Association of Canada Short Course
  • Bombolakis, E.G., Study of the brittle fracture process under uniaxial compression (1973) Tectonophysics, 18, pp. 231-248
  • Bons, P.D., Elburg, M.A., Gómez-Rivas, E., A review of the formation of tectonic veins and their microstructures (2012) J. Struct. Geol., 43, pp. 33-62
  • Boullier, A.-M., Fluid inclusions: tectonic indicators (1999) J. Struct. Geol., 21, pp. 1229-1235
  • Cheng, Y., Wong, L.N.Y., Zou, C., Experimental study on the formation of faults from en-echelon fractures in Carrara Marble (2015) Eng. Geol., 195, pp. 312-326
  • Closs, E., Experimental analysis of fracture patterns (1955) Bull. Geol. Soc. Am., 66, pp. 241-258
  • Derez, T., Pennock, G., Drury, M., Sintubin, M., Low-temperature intracrystalline deformation microstructures in quartz (2015) J. Struct. Geol., 71, pp. 3-23
  • Griggs, D., Hydrolytic weakening of quartz and other silicates (1967) Geophys. J. Int., 14, pp. 19-31
  • Griggs, D., A model of hydrolytic weakening in quartz (1974) J. Geophys. Res., 79, pp. 1653-1661
  • Heggie, M., A molecular water pump in quartz dislocations (1992) Nature, 355, pp. 337-339
  • Herwegh, M., Berger, A., Ebert, A., Brodhag, S., Discrimination of annealed and dynamic fabrics: consequences for strain localization and deformation episodes of large-scale shear zones (2008) Earth Planet. Sci. Lett., 276, pp. 52-61
  • Hollister, L.S., Enrichment of CO2 in fluid inclusions in quartz by removal of H2O during crystal-plastic deformation (1990) J. Struct. Geol., 12, pp. 895-901
  • Kerrich, R., Some effects of tectonic recrystallization on fluid inclusions in vein quartz (1976) Contrib. Mineral. Pet., 59, pp. 195-202
  • Kirby, S., Hemingway, B.S., Lee, R., Anomalous fracture and thermal behavior of hydrous minerals (1990) The Brittle-ductile Transition in Rocks, , A.G. Duba W.B. Durham J.W. Handin H.F. Wang American Geophysical Union
  • Kranz, R.L., Crack growth and development during creep of Barre granite (1979) Int. J. Rock Mech. Min. Sci Geomech. Abstr., 16, pp. 23-35
  • Kranz, R.L., Microcracks in rocks: a review (1983) Tectonophysics, 100, pp. 449-480
  • Krüger, Y., Diamond, L., P-V-T-X properties of two H2O-CO2-NaCl mixtures up to 850°C and 500 MPa: synthetic fluid inclusion study (2001) XVI ECROFI, Porto, 2001, Abstracts. Faculdade de Ciéncias de Porto, Departamento de Geologia, 7, pp. 241-244. , F. Noronha A. D'pria A. Guedes Memória
  • Lisle, R.J., Shear zone deformation determined from sigmoidal tension gashes (2013) J. Struct. Geol., 50, pp. 35-43
  • López de Luchi, M., Siegesmund, S., Wemmer, K., Steenken, A., Naumann, R., Geochemical constraints on the petrogenesis of the Paleozoic granitoids of the Sierra de San Luis, Sierras Pampeanas, Argentina (2007) J. S. Am. Earth Sci., 24, pp. 138-166
  • Montési, L.G.J., Fabric development as the key for forming ductile shear zones and enabling plate tectonics (2013) J. Struct. Geol., 50, pp. 254-266
  • Morosini, A.F., Ortiz Suárez, A.E., Otamendi, J.E., Pagano, D.S., Ramos, G.A., La Escalerilla pluton, San Luis Argentina: the orogenic and post-orogenic magmatic evolution of the famatinian cycle at Sierras de San Luis (2017) J. S. Am. Earth Sci., 73, pp. 100-118
  • Nicholson, R., Pollard, D.D., Dilation and linkage of echelon cracks (1985) J. Struct. Geol., 7, pp. 583-590
  • Olson, J.E., Pollard, D.D., The initiation and growth of en echelon veins (1991) J. Struct. Geol., 13, pp. 595-608
  • Oriolo, S., Oyhantçabal, P., Heidelbach, F., Wemmer, K., Siegesmund, S., Structural evolution of the Sarandí del Yí Shear Zone: kinematics, deformation conditions and tectonic significance (2015) Int. J. Earth Sci., 104, pp. 1759-1777
  • Ortiz Suárez, A., Sosa, G.M., Relaciones genéticas entre las pegmatitas portadoras de estaño y las metamorfitas asociadas en la zona de La Carolina/San Francisco del Monte de Oro (1991) Prov. San Luis. Rev. Asoc. Geol. Arg, 46, pp. 339-343
  • Ortiz Suárez, A., Prozzi, C., Llambías, E., Geología de la parte Sur de la Sierra de San Luis y granitoides asociados, Argentina (1992) Rev. Estud. Geol., 48, pp. 269-277
  • Platt, J.P., Behr, W.M., Grainsize evolution in ductile shear zones: implications for strain localization and the strength of the lithosphere (2011) J. Struct. Geol., 33, pp. 537-550
  • Pollard, D.D., Segall, P., Delaney, P.T., Formation and interpretation of dilatant echelon cracks (1982) Bull. Geol. Soc. Am., 93, pp. 1291-1303
  • Ramsay, J.G., Huber, M.I., The techniques of modern structural geology (1987) Folds and Fractures, 2. , Academic Press London
  • Riedel, W., Zur Mechanik geologischer Brucherscheinungen (1929) Zbl. Mineral. Geo. Pal. B, pp. 354-368
  • Sato, A.M., González, P., Llambías, E., Evolución del orógeno Famatiniano en la Sierra de San Luis: magmatismo de arco, deformación y metamorfísmo de bajo a alto grado (2003) Rev. Asoc. Geol. Argent., 58, pp. 487-504
  • Sibson, R.H., Continental fault structure and the shallow earthquake source (1983) J. Geol. Soc. Lond., 140, pp. 741-767
  • Sosa, G., Pegmatitas portadoras de niobio y tantalio, Sierra San Luis, Argentina (1992), Congreso Geología Económica Córdoba, Argentina; Sosa, G.M., Augsburger, M.S., Pedregosa, J.C., Columbite-group minerals from rare-metal granitic pegmatites of the Sierra de San Luis, Argentina (2002) Eur. J. Mineral., 14, pp. 627-636
  • Sosa, G.M., van den Kerkhof, A.M., Wemmer, K., Lüders, V., Plessen, B., Montenegro, T., Fluid inclusions, isotopic fluid composition and new age datings of rare-metal pegmatites, Sierra de San Luis, Argentina (2014), Latin American Colloquium Heidelberg; Steenken, A., Siegesmund, S., Wemmer, K., Lopez de Luchi, M.G., Time constraints on the Famatinian and Achalian structural evolution of the basement of the Sierra de San Luis (Eastern Sierras Pampeanas, Argentina) (2008) J. S. Am. Earth Sci., 25, pp. 336-358
  • Thiele, S.T., Micklethwaite, S., Bourke, P., Verrall, M., Kovesi, P., Insights into the mechanics of en-échelon sigmoidal vein formation using ultra-high resolution photogrammetry and computed tomography (2015) J. Struct. Geol., 77, pp. 27-44
  • Thomas, R., Davidson, P., Badanina, E., A melt and fluid inclusion assemblage in beryl from pegmatite in the Orlovka amazonite granite, East Transbaikalia, Russia: implications for pegmatite-forming melt systems (2009) Mineral. Pet., 96, pp. 129-140
  • Van den Kerkhof, A.M., Hein, U.F., Fluid inclusion petrography (2001) Lithos, 55, pp. 27-47
  • Vitale, S., Mazzoli, S., Strain analysis of heterogeneous ductile shear zones based on the attitudes of planar markers (2008) J. Struct. Geol., 32, pp. 321-329

Citas:

---------- APA ----------
Sosa, G.M., Oriolo, S. & van den Kerkhof, A. (2018) . Development of sigmoidal en-échelon microfractures in beryl and the role of strain localization evidenced by fluid inclusions. Journal of Structural Geology, 115, 297-303.
http://dx.doi.org/10.1016/j.jsg.2018.04.005
---------- CHICAGO ----------
Sosa, G.M., Oriolo, S., van den Kerkhof, A. "Development of sigmoidal en-échelon microfractures in beryl and the role of strain localization evidenced by fluid inclusions" . Journal of Structural Geology 115 (2018) : 297-303.
http://dx.doi.org/10.1016/j.jsg.2018.04.005
---------- MLA ----------
Sosa, G.M., Oriolo, S., van den Kerkhof, A. "Development of sigmoidal en-échelon microfractures in beryl and the role of strain localization evidenced by fluid inclusions" . Journal of Structural Geology, vol. 115, 2018, pp. 297-303.
http://dx.doi.org/10.1016/j.jsg.2018.04.005
---------- VANCOUVER ----------
Sosa, G.M., Oriolo, S., van den Kerkhof, A. Development of sigmoidal en-échelon microfractures in beryl and the role of strain localization evidenced by fluid inclusions. J. Struct. Geol. 2018;115:297-303.
http://dx.doi.org/10.1016/j.jsg.2018.04.005