Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte la política de Acceso Abierto del editor

Abstract:

In some arid land, the irrigated fields are not contiguous and are surrounded by large patches of bare land. During the summer time and rainless season, the solar radiation flux is high and the surface temperature during daylight in the dry bare areas, is much higher than that of the air. The sensible heat generated over these areas may be advected to the irrigated fields. The crops are usually planted in rows and the irrigation systems used (trickle) do not wet the whole surface, the dry bare soil between the rows may develop high soil surface temperatures and lead to convective activity inside the canopy above the bare soil. Advection from the surrounding fields and convective activity inside the canopy affect the layer above the crop. We studied the surface layer above an irrigated tomato field planted in Israel's Negev desert. The crop was planted in rows, trickle irrigated and the distance between the outer edges of two adjacent rows was 0.36 m at the time of measurement. The gradients in temperature and water vapor pressure were obtained at various heights above the canopy using a Bowen ratio machine. The residual in the energy balance equation was used as a criterion to determine the equilibrium layer. During the morning, unstable conditions prevail, and the equilibrium layer was between Z/h ∼ 1.9 and 2.4. In some particular circumstances, in the late morning, the bare soil between the rows reached extremely high temperatures and during conditions with low wind speeds free convection was identified. During these hours the "residuals" of the energy budget to the heights Z/h = 1.5 and 2.4 were significantly different from zero and an extremely large variability was evident for the Z/h = 3.2 layer. Local advection took place during the afternoon resulting in an increase in the stability of the uppermost measured layer and propagated slowly downwards. The equilibrium layer was between Z/h ∼ 1.5 to 2.4. The residuals were significantly different from zero for the uppermost layers Z/h = 2.7 and 3.2 during these periods. Our findings suggest that the depth and location of the internal equilibrium layer above trickle irrigated row crop fields surrounded by dry bare areas, vary in response to wind speed and the temperature of the soil in between the rows of the crop. For some time intervals, the computation of fluxes using the conventional flux-gradient approach measurements was not possible.

Registro:

Documento: Artículo
Título:Characteristics of the surface layer above a row crop in the presence of local advection
Autor:Figuerola, P.I.; Berliner, P.R.
Filiación:Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
Palabras clave:Advection; Convection; Row crop; advection; arid region; crop; surface layer; Lycopersicon esculentum
Año:2006
Volumen:19
Número:2
Página de inicio:75
Página de fin:108
Título revista:Atmosfera
Título revista abreviado:Atmosfera
ISSN:01876236
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01876236_v19_n2_p75_Figuerola

Referencias:

  • Bradley, E.F., A micrometeorological study of velocity profiles and surface drag in the region modified by a change in surface roughness (1968) Q. J. R. Meteorol. Soc., 94, pp. 361-379
  • Blad, B.L., Rosenberg, N.J., Lysimetric calibrations of the Bowen ratio-energy balance method for evapotranspiration estimation in the central Great Plains (1974) J. Appl. Meteorol., 13, pp. 227-236
  • Brutsaert, W.H., (1982) Evaporation Into the Atmosphere, p. 299. , Reidel, Dordrecht, Netherlands
  • Businger, J.A., Wyngaard, J.C., Izumi, Y., Bradley, E.F., Flux-profile relationships in the atmospheric surface layer (1971) J. Atmos. Sci., 28, pp. 181-189
  • Cellier, P., Brunet, Y., Flux-gradient relationships above tall plant canopies (1992) Agric. Forest Meteorol., 58, pp. 93-117
  • Daamen, C.C., Dugas, W.A., Prendergast, P.T., Judd, M.J., McNaughton, K.G., Energy flux measurement in a sheltered lemon orchard (1999) Agric. Forest Meteorol., 93, pp. 171-183
  • Dyer, A.J., Hicks, B.B., Flux-gradient relationships in the constant flux layer (1970) Q. J. R. Meteorol. Soc., 96, pp. 715-721
  • Dyer, A.J., A review of flux-profile relationships (1974) Boundary-Layer Meteorol., 7, pp. 363-372
  • Dyer, A.J., Crawford, T.V., Observations of climate at a leading edge (1965) Q. J. R. Meteorol. Soc., 91, pp. 345-348
  • Elliott, W.P., The growth of the atmospheric internal boundary layer (1958) Trans. Amer. Geophys. Union, 39, pp. 1048-1054
  • Figuerola, P.I., Mazzeo, N.A., Analytical model for predicting nocturnal and short after sunrise temperature of surface with near calm and cloudless sky (1997) Agric. Forest Meteorol., 85, pp. 229-237
  • Figuerola, P.I., Berliner, P.R., Evapotranspiration under advective conditions (2005) Int. J. Biometeorol., 49 (6), pp. 403-416
  • Ford, E.D., The Canopy of a scots pine forest: Description of a surface of complex roughness (1976) Agric. Forest Meteorol., 17, pp. 9-32
  • Garrat, J.R., Comments on the paper "Analysis of flux-profile relationships above tall vegetationan alternative view"By B. B. Hicks, G. D. Hess and M. L. Weseley (1979) Q. J. R. Meteorol. Soc., 105, pp. 1079-1082
  • Hebbar, S.S., Ramachandrappa, B.K., Nanjappa, H.V., Prabhakar, M., (2004) Europ. J. Agronomy, 21, pp. 117-127
  • Hicks, B.B., Hess, G.D., Wesely, M.L., Analysis of flux-profile relationships above tall vegetation-an alternative view (1979) Q. J. R. Meteorol. Soc., 105, pp. 1074-1077
  • Jacobs, A.F.G., Verhoef, N., Soil evaporation from sparse natural vegetation estimated from Sherwood numbers (1997) J. Hydrology, 188-189, pp. 443-452
  • Jacobs, A.F.G., Boxel, J.H., El-Kilani, R.M., Nighttime free convection characteristics within a plant canopy (1994) Boundary-Layer Meteorol., 71, pp. 375-391
  • Jegede, O.O., Foken, T., A study of the internal boundary layer due to a roughness change in neutral conditions observed during the LINEX field campaigns (1999) Theor. Appl. Climatol., 62, pp. 31-41
  • Kaimal, J.C., Finnigan, J.J., Atmospheric boundary layer flows, their structure and measurement (1994), p. 289. , Oxford. Univ. Press; Kroon, L.J.M., Bink, N.J., Conditional statistics of vertical heat fluxes in local advection conditions (1996) Boundary Layer Meteorol., 80, pp. 50-78
  • Kustas, W.J., Bhaskar, B.J., Kunkel, K.E., Gay, L.L.W., Estimate of the aerodynamic roughness parameters over an incomplete canopy cover of cotton (1989) Agric. Forest Meteorol., 46, pp. 91-105
  • Lee, X.Q.Y., Xiaomin, S., Jiandong, L., Qingwen, M., Yunfen, L., Zhang, X., Micrometeorological fluxes under the influence of regional and local advection: A revisit (2004) Agric. Forest Meteorol., 122, pp. 111-124
  • Mahrt, L., Surface heterogeneity and vertical structure of the boundary layer (2000) Boundary-Layer Meteorol., 96, pp. 33-62
  • Mayocchi, C.L., Bristow, K.L., Soil surface heat flux: Some general questions and comments on measurements (1995) Agric. Forest Meteorol., 975, pp. 43-50
  • Monteith, J.L., Unsworth, M.H., (1990) Principles of Environmental Physics, p. 291. , 2nd ed. Edward Arnold, London
  • Mulhearn, P.J., Relations between surface fluxes and mean profiles of velocity temperature, and concentration, downwind of a change in surface roughness (1977) Q. J. R. Meteorol. Soc., 103, pp. 785-802
  • Panofsky, H.A., Re-analysis of Swinbank's Kerang observations: Flux of heat and momentum in the planetary boundary layer (1965), p. 224. , Rept., Dept. of Meteorology, Penn. State Univ; Paulson, C.A., The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer (1970) J. Appl. Meteorol., 9, pp. 857-861
  • Pérez, P.J., Castellvi, F., Ibáñez, M., Rosell, J., Assessment of reliability of Bowen method for partitioning fluxes (1999) Agric. Forest Meteorol., 97, pp. 141-150
  • Perrier, E.R., Robertson, J.M., Millington, R.J., Peters, D.B., Spatial and temporal variation of wind above and within a soybean canopy (1972) Agric. Forest Meteorol., 10, pp. 421-442
  • Prueger, J.H., Hipps, L.E., Cooper, D.I., Evaporation and the development of the local boundary layer over an irrigated surface in an arid region (1996) Agric. Forest Meteorol., 78, pp. 223-237
  • Rana, G., Katerji, N., Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: A review (2000) Europ. J. Agronomy., 13, pp. 125-153
  • Raupach, M.R., Anomalies in flux-gradient relationships over forest (1979) Boundary-Layer Meteorol., 16, pp. 467-486
  • Raupach, M.R., Rough-wall turbulent boundary layers (1991) Appl. Mech. Rev., 44, pp. 1-25
  • Robinson, S.M., Computing wind profile parameters (1962) J. Atmos. Sci., 19, pp. 189-190
  • Schween, J.H., Zelger, M., Wichura, B., Foken, T., Dlugi, R., Profiles and fluxes of micrometeorological parameters above and within the Mediterranean forest at Castelporziano (1997) Atm. Environ., 31, pp. 185-198
  • Shuttleworth, W.J., Wallace, J.S., Evaporation from sparse crops-an energy combination theory (1985) Q. J. R. Meteorol. Soc., 111, pp. 839-855
  • Stull, R.B., (1988) An Introduction to Boundary-layer Meteorology, p. 666. , Kluwer, Dordrecht
  • Thom, A.S., Momentum, mass and heat exchange of plant communities vegetation and the atmosphere (1975) Vegetation and the Atmosphere, pp. 57-110. , (J. L. Montheit, Ed.) Academic Press, London
  • Zangvil, A., Offer, Z., Osnat Mirón, I.A., Sasson, A., Klepach, D., (1991) Meteorological Analysis of the Shivta Region in the Negev, p. 202. , Desert Meteorology Papers, Series B No 1, Ben-Gurion University of the Negev. The Jacob Blaustein Inst
  • Zelger, M., Schween, J., Reuder, J., Gori, T., Simmerl, K., Dlugi, R., Turbulent transport, characteristic length and time scales above and within the Bema forest site at Castelporziano (1997) Atm. Environment, 31, pp. 217-227

Citas:

---------- APA ----------
Figuerola, P.I. & Berliner, P.R. (2006) . Characteristics of the surface layer above a row crop in the presence of local advection. Atmosfera, 19(2), 75-108.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01876236_v19_n2_p75_Figuerola [ ]
---------- CHICAGO ----------
Figuerola, P.I., Berliner, P.R. "Characteristics of the surface layer above a row crop in the presence of local advection" . Atmosfera 19, no. 2 (2006) : 75-108.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01876236_v19_n2_p75_Figuerola [ ]
---------- MLA ----------
Figuerola, P.I., Berliner, P.R. "Characteristics of the surface layer above a row crop in the presence of local advection" . Atmosfera, vol. 19, no. 2, 2006, pp. 75-108.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01876236_v19_n2_p75_Figuerola [ ]
---------- VANCOUVER ----------
Figuerola, P.I., Berliner, P.R. Characteristics of the surface layer above a row crop in the presence of local advection. Atmosfera. 2006;19(2):75-108.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01876236_v19_n2_p75_Figuerola [ ]