Artículo

Capitelli, N.A.; Minian, E.G."A Simplicial Complex is Uniquely Determined by Its Set of Discrete Morse Functions" (2017) Discrete and Computational Geometry. 58(1):144-157
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We prove that a connected simplicial complex is uniquely determined by its complex of discrete Morse functions. This settles a question raised by Chari and Joswig. In the 1-dimensional case, this implies that the complex of rooted forests of a connected graph G completely determines G. © 2017, Springer Science+Business Media New York.

Registro:

Documento: Artículo
Título:A Simplicial Complex is Uniquely Determined by Its Set of Discrete Morse Functions
Autor:Capitelli, N.A.; Minian, E.G.
Filiación:Departamento de Matemática-IMAS, FCEyN, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
Palabras clave:Collapsibility; Discrete Morse complex; Discrete Morse theory
Año:2017
Volumen:58
Número:1
Página de inicio:144
Página de fin:157
DOI: http://dx.doi.org/10.1007/s00454-017-9865-z
Handle:http://hdl.handle.net/20.500.12110/paper_01795376_v58_n1_p144_Capitelli
Título revista:Discrete and Computational Geometry
Título revista abreviado:Discrete Comput. Geom.
ISSN:01795376
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_01795376_v58_n1_p144_Capitelli

Referencias:

  • Ayala, R., Fernández, L.M., Quintero, A., Vilches, J.A., A note on the pure Morse complex of a graph (2008) Topol. Appl, 155 (17-18), pp. 2084-2089
  • Babson, E., Kozlov, D.N., Proof of the Lovász conjecture (2007) Ann. Math, 165 (3), pp. 965-1007
  • Björner, A., Welker, V., Complexes of directed graphs (1999) SIAM J. Discrete Math, 12 (4), pp. 413-424
  • Chari, M.K., On discrete Morse functions and combinatorial decompositions (2000) Discrete Math, 217 (1-3), pp. 101-113
  • Chari, M.K., Joswig, M., Complexes of discrete Morse functions (2005) Discrete Math, 302 (1-3), pp. 39-51
  • Engström, A., Complexes of directed trees and independence complexes (2009) Discrete Math, 309 (10), pp. 3299-3309
  • Forman, R., Morse theory for cell complexes (1998) Adv. Math, 134 (1), pp. 90-145
  • Forman, R., Witten–Morse theory for cell complexes (1998) Topology, 37 (5), pp. 945-979
  • Jojić, D., Shellability of complexes of directed trees (2013) Filomat, 27 (8), pp. 1551-1559
  • Kozlov, D.N., Complexes of directed trees (1999) J. Combin. Theory Ser. A, 88 (1), pp. 112-122
  • Lundell, A.T., Weingram, S., (1969) The Topology of CW Complexes, , The University Series in Higher Mathematics, Van Nostrand Reinhold, New York

Citas:

---------- APA ----------
Capitelli, N.A. & Minian, E.G. (2017) . A Simplicial Complex is Uniquely Determined by Its Set of Discrete Morse Functions. Discrete and Computational Geometry, 58(1), 144-157.
http://dx.doi.org/10.1007/s00454-017-9865-z
---------- CHICAGO ----------
Capitelli, N.A., Minian, E.G. "A Simplicial Complex is Uniquely Determined by Its Set of Discrete Morse Functions" . Discrete and Computational Geometry 58, no. 1 (2017) : 144-157.
http://dx.doi.org/10.1007/s00454-017-9865-z
---------- MLA ----------
Capitelli, N.A., Minian, E.G. "A Simplicial Complex is Uniquely Determined by Its Set of Discrete Morse Functions" . Discrete and Computational Geometry, vol. 58, no. 1, 2017, pp. 144-157.
http://dx.doi.org/10.1007/s00454-017-9865-z
---------- VANCOUVER ----------
Capitelli, N.A., Minian, E.G. A Simplicial Complex is Uniquely Determined by Its Set of Discrete Morse Functions. Discrete Comput. Geom. 2017;58(1):144-157.
http://dx.doi.org/10.1007/s00454-017-9865-z